Client:

Estuary View Enterprises 2020 Ltd.

Project:

# **Bessborough SHD Development**

Report:

# Services Infrastructure Report





# **Document Control Sheet**

| Client:                                                | Estuary View Enterprises 2020 Ltd. |  |  |
|--------------------------------------------------------|------------------------------------|--|--|
| Project Title:         Bessborough SHD Development     |                                    |  |  |
| Document Title:         Services Infrastructure Report |                                    |  |  |
| File Name:         21207-JBB-PH2-XX-RP-C-01006         |                                    |  |  |

| Table of Contents | List of Tables | List of Figures | Pages of Text<br>(No.) | Appendices<br>(No.) |
|-------------------|----------------|-----------------|------------------------|---------------------|
| (incl. Y/N)       | (incl. Y/N)    | (incl. Y/N)     | (NO.)                  | (NO.)               |
| Y                 | Ν              | Y               | 15                     | 12                  |

| Document Revision        |                  |                     |                      | Document              | Verification                         |                                      |                                         |
|--------------------------|------------------|---------------------|----------------------|-----------------------|--------------------------------------|--------------------------------------|-----------------------------------------|
| Issue Date<br>(DD/MM/YY) | Revision<br>Code | Suitability<br>Code | Author<br>(Initials) | Checker<br>(Initials) | Reviewer<br>As Per PMP<br>(Initials) | Approver<br>As Per PMP<br>(Initials) | <b>Peer Review</b><br>(Initials or N/A) |
| 30/07/2021               | P01              | S3                  | DOB                  | RS                    | TF                                   | TF                                   | N/A                                     |
| 21/02/2022               | P02              | S3                  | DOB                  | RS                    | TF                                   | TF                                   | N/A                                     |
| 21/03/2022               | P03              | S3                  | DOB                  | RS                    | TF                                   | TF                                   | N/A                                     |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |
|                          |                  |                     |                      |                       |                                      |                                      |                                         |



# Table of Contents

| SECTION 1: | INTRODUCTION                                                    | . 1 |
|------------|-----------------------------------------------------------------|-----|
| 1.1        | Scope of the Report                                             | . 1 |
| 1.2        | Site Location                                                   |     |
| 1.3        | Proposed Development Brief                                      | . 1 |
| SECTION 2: | WASTEWATER COLLECTION & DISPOSAL                                | 3   |
| 2.1        | Existing Wastewater Network                                     | . 3 |
| 2.2        | Pre-Connection Enquiry Stage                                    | . 3 |
| 2.3        | Design Acceptance Stage                                         | . 3 |
| 2.4        | Loading Calculations                                            | . 4 |
| SECTION 3: | STORMWATER COLLECTION & DISPOSAL                                | 6   |
| 3.1        | Existing Hydrology                                              | . 6 |
| 3.2        | Existing Stormwater Network                                     |     |
| 3.3        | Greenfield Runoff                                               | . 8 |
| 3.4        | Proposed Development Surface Water Management System            | 9   |
| 3.5        | Conveyance of Surface Water Outflow to Final Discharge Location | 13  |
| SECTION 4: | WATER SUPPLY                                                    | 14  |
| 4.1        | Existing Watermain Network                                      | 14  |
| 4.2        | Pre-Connection Enquiry Stage                                    | 14  |
| 4.3        | Design Acceptance Stage                                         | 14  |
| 4.4        | Loading Calculations                                            | 14  |

# Appendices

| Appendix 1: | Proposed Site Layout Plan                                                  |
|-------------|----------------------------------------------------------------------------|
| Appendix 2: | Cork City Council - Existing Wastewater Network                            |
| Appendix 3: | As-Built Local Drainage Network                                            |
| Appendix 4: | Irish Water - Confirmation of Feasibility & Statement of Design Acceptance |
| Appendix 5: | Foul Sewer – MicroDrainage Calculations                                    |
| Appendix 6: | Priority Geotechnical Ltd. – Ground Investigations                         |
| Appendix 7: | Cork City Council – Existing Stormwater Network                            |
| Appendix 8: | HR Wallingford – Greenfield Runoff Estimation                              |
| Appendix 9: | Cork City Council Correspondence                                           |
| Appendix 10 | : Surface Water - MicroDrainage Calculations                               |
| Appendix 11 | : Attenuation Estimates, Storage Tank Sizing                               |

Appendix 12: Cork City Council - Existing watermain Records

# List of Figures

| Figure 1-1: Location of Proposed Development  | 2  |
|-----------------------------------------------|----|
| Figure 1-2: Phasing of Proposed Development   |    |
| Figure 3-1: Hydrological Features of the Area |    |
| Figure 3-2: Soil Permeability                 |    |
| Figure 3-3: Groundwater Vulnerability         | 7  |
| Figure 3-4: Surface Water Catchment Areas     | 11 |



# List of Tables

| Table 2-1: Foul Sewer Size/Gradient Criteria                                   | 4  |
|--------------------------------------------------------------------------------|----|
| Table 2-2: Foul Flow Calculations for Residential Development                  |    |
| Table 2-3: Foul Flow Calculations for Commercial Development                   | 5  |
| Table 3-1: HR Wallingford Design Value Outputs                                 | 8  |
| Table 3-2: Surface Areas                                                       | 10 |
| Table 3-3: Summary of Attenuation Requirements and Proposals                   | 12 |
| Table 3-4: Pollution Hazard Indices for Different Land Uses                    | 12 |
| Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters | 12 |
| Table 4-1: Water Demand for Residential Development                            | 15 |
| Table 4-2: Water Demand for Commercial development                             | 15 |



# SECTION 1: INTRODUCTION

## 1.1 Scope of the Report

This Services Infrastructure Report outlines the proposed means of servicing the development with wastewater collection and disposal, stormwater management and disposal and water supply infrastructure. A Flood Risk Assessment is provided with this submission under a separate cover. Roads and traffic issues are dealt with separately by MHL Consulting Engineers on behalf of the Applicant and their submission should be consulted for such details.

The following should be read in conjunction with the engineering drawings which illustrate the servicing proposals and with the submissions by other members of the Applicant's design team

### 1.2 Site Location

The proposed development is located at Phase 2 'The Farm', Bessborough, Ballinure, Blackrock, Cork, on a circa 5.13-hectare site, with a developable area of 4.28-hectares, see Figure 1.1. This proposed development will form Phase 2 of a larger development on a circa 16.59-hectare site, see Figure 1.2 for outline phasing proposals.

The South Ring Road (N40) is located approximately 250m from the southern boundary of the proposed development. The boundaries of the site are formed by the buildings, outbuildings, roads and open spaces of the overall Bessborough complex. The site slopes gently from north to south, with ground levels falling from approximately 18.00 m OD in the north-east of the site to 10.50 m OD in the south-west of the site.

## 1.3 Proposed Development Brief

This report is prepared in support of a Strategic Housing Development (SHD) planning application by Estuary View Enterprises 2020 Ltd.

The proposed development provides for the demolition of 10 no. existing agricultural buildings /sheds and log cabin residential structure and the construction of a residential development of 140 no. residential apartment units over 2 no. retained and repurposed farmyard buildings (A & B) with single storey extension and 3 no. new blocks of 3-5 storeys in height, with supporting resident amenity facilities, crèche, and all ancillary site development works. The proposed development includes 140 no. apartments to be provided as follows: Block C (9 no. 1-bedroom and 25 no. 2-bedroom over 3 storeys), Block D (34 no. 1-bedroom & 24 no. 2-bedroom over 3-4 storeys), Block E (27 no. 1-bedroom, 20 no. 2-bedroom & 1 no. 3-bedroom over 4-5 storeys). It is proposed to use retained Block A and Block B for resident amenities which include home workspace, library, lounge and function space.

The proposal includes a new pedestrian/cycle bridge over the adjoining Passage West Greenway to the east, connecting into the existing down ramp from Mahon providing direct access to the greenway and wider areas, as well as new pedestrian access to Bessborough Estate to the north including upgrades to an existing pedestrian crossing on Bessboro Road.

The proposed development provides for outdoor amenity areas including publicly accessible parkland, landscaping, surface car parking, bicycle parking, bin stores, substation, public lighting, roof mounted solar panels, wastewater infrastructure including new inlet sewer to the Bessborough Wastewater Pumping Station to the west, surface water attenuation, water utility services and all ancillary site development works. Vehicular access to the proposed development will be provided via the existing access road off the Bessboro Road. See Appendix 1 for proposed site layout plan.





Figure 1-1: Location of Proposed Development



Figure 1-2: Phasing of Proposed Development



# SECTION 2: WASTEWATER COLLECTION & DISPOSAL

### 2.1 Existing Wastewater Network

Cork City Council / Irish Water drainage records show that there is an existing 375/450mmØ foul sewer located to the west of the Phase 3 lands, outside of the boundary of the Applicant's lands, which runs north to south and discharges to the Bessborough Wastewater Pumping Station (WWPS). From the WWPS a 350mmØ rising main heads east crossing through the greenfield area in the ownership of the Applicant before turning north along the Passage West Greenway, see Appendix 2.

A feasibility study of the local area has revealed that there is an existing a 150mmØ foul sewer in the road adjacent to the eastern boundary of the Phase 2 site which runs north to south before turning in a westerly direction and connecting to the WWPS described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

### 2.2 Pre-Connection Enquiry Stage

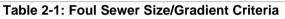
Following a Pre-Connection Enquiry, Irish Water (IW) issued a Confirmation of Feasibility (COF) stating that the site can be serviced by its wastewater infrastructure network. This COF is included in Appendix 4.

IW have advised that the proposed connection should be made directly to the WWPS, via a new inlet sewer. The WWPS is almost at design loading capacity. However, Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development and subsequent phases of this development. This upgrade project is scheduled to be completed by Q4 2022 and the proposed connection could be completed as soon as possibly practicable after this date.

### 2.3 Design Acceptance Stage

The proposed designs were progressed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure and were submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

The wastewater collection within the development will be via a network of gravity sewers. The wastewater flows will be collected and conveyed in in a westerly direction, from the western boundary of the proposed development site and will connect directly to the WWPS.


The final connection from the western edge of the lands to the existing WWPS will be undertaken using directional-drilling techniques to ensure that the existing western boundary wall to the lands will remain undisturbed during construction.

The wastewater collection system is designed and will be constructed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure to ensure self-cleansing velocities will be achieved on all pipe runs. The pipes proposed as part of this design have been sized in accordance with Table 2.1, an extract from IW-CDS-5030-03 (Revision 2 2020).

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework. The gravity wastewater sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 5 of this report. The foul sewer layout plans are attached on Drawing No's. 21207-JBB-PH1-XX-DR-C-04000 & 04001.



| No. of Dwellings | Pipe Diameter    | Minimum Gradient |
|------------------|------------------|------------------|
| 2 to 9           | 150mm (or 225mm) | 1:60             |
| 10 to 20         |                  | 1:150            |
| 21 to 210        |                  | 1:200            |
| 211 to 250       | 225mm            | 1:150            |
| 250 to 330       | _                | 1:100            |
| 331 to 450       |                  | 1:300            |
| 451 to 565       |                  | 1:200            |
| 566 to 655       |                  | 1:150            |
| 656 to 830       | -                | 1:100            |



### 2.4 Loading Calculations

The design flows are calculated using the Irish Water Code of Practice for Wastewater Infrastructure Appendix B which is summarised in tables 2.2 and 2.3 below.

| Use         | No. of<br>Units                                                                | Occupancy<br>Rate | Population (P) | Loading (G)<br>(I/day/person) | Daily Loading<br>(PxG) (I/day) | Daily<br>Loading<br>(I/s) |
|-------------|--------------------------------------------------------------------------------|-------------------|----------------|-------------------------------|--------------------------------|---------------------------|
| Residential | 140                                                                            | 2.7/ Unit         | 378            | 150                           | 56,700                         |                           |
|             |                                                                                |                   |                |                               |                                |                           |
|             | Infiltration (I) 10% (COP Appendix B – Table 2.4) 5,670                        |                   |                |                               |                                |                           |
|             |                                                                                |                   | Dry We         | ather Flow (PG +I)            | 62,370                         |                           |
|             | Residential Peaking Factor (Pf <sub>Dom</sub> ) (COP Appendix B – Table 2.5) 6 |                   |                |                               |                                |                           |
|             | Design Foul Flow [(Pf <sub>Dom</sub> x PG + I] 345,870 4.003                   |                   |                |                               |                                | 4.003                     |
| Mi          | Misconnection Allowance (SW) 3% (COP Appendix B - Section 2.2.10) 0.338        |                   |                |                               |                                | 0.338                     |
|             | Design Flow 4.341                                                              |                   |                |                               |                                | 4.341                     |

Table 2-2: Foul Flow Calculations for Residential Development



| Use                   | Floor<br>Area (m²)                                                                   | Occupancy<br>Rate      | Population (P) | Loading (G)<br>(I/day/person) | Daily<br>Loading<br>(PxG) (I/day) | Daily<br>Loading<br>(I/s) |
|-----------------------|--------------------------------------------------------------------------------------|------------------------|----------------|-------------------------------|-----------------------------------|---------------------------|
| Creche                | 242                                                                                  | 31*                    | 31             | 90                            | 2,790                             |                           |
|                       |                                                                                      | 1 per 20m <sup>2</sup> | 3              | 50                            | 150                               |                           |
| Café                  | 65                                                                                   | 1 per 5m <sup>2</sup>  | 13             | 12                            | 156                               |                           |
| Communal<br>Workspace | 180                                                                                  | 24**                   | 24             | 100                           | 2,400                             |                           |
| Gym                   | 108                                                                                  | 1 per 5m <sup>2</sup>  | 22             | 50                            | 1,100                             |                           |
| Lounge                | 85                                                                                   | 30**                   | 30             | 15                            | 450                               |                           |
| Function<br>Room      | 70                                                                                   | 30**                   | 30             | 60                            | 1,800                             |                           |
|                       | Total 8,846                                                                          |                        |                |                               |                                   |                           |
|                       | Total (Based on 12 Hour Day) 4,423                                                   |                        |                |                               |                                   |                           |
|                       | Infiltration (I) 10% (COP Appendix B – Table 2.4) 442                                |                        |                |                               |                                   |                           |
|                       | Dry Weather Flow (I/s) PG +I 4,865                                                   |                        |                |                               |                                   |                           |
|                       | Commercial Peaking Factor (Pf <sub>Dom, Ind</sub> ) (COP Appendix B – Table 2.7) 4.5 |                        |                |                               |                                   |                           |
|                       | Design Foul Flow (Pf <sub>Dom, Ind</sub> x PG) + I (I/s) 20,346 0.235                |                        |                |                               |                                   |                           |
|                       | Misconnection Allowance (SW) 2% (COP Appendix B – Table 2.10) 0.233                  |                        |                |                               |                                   | 0.233                     |
|                       | Design Flow (l/s) 0.468                                                              |                        |                |                               |                                   |                           |

#### Table 2-3: Foul Flow Calculations for Commercial Development

The combined residential and commercial design flow is 4.8l/s. This figure has been proportionally applied as a base flow to the heads of the wastewater sewer runs within the MicroDrainage design model, see Appendix 5 for the results.



# SECTION 3: STORMWATER COLLECTION & DISPOSAL

## 3.1 Existing Hydrology

The proposed development site does not contain any mapped watercourse. The nearest watercourse to the proposed Phase 2 development site is the Douglas Estuary which is located approximately 250m to the south of the site. The Douglas Estuary flows in an easterly direction and discharges to transitional water body Lough Mahon to the south of the site. The main hydrological features associated with the site are presented in Figure 3.1 below.

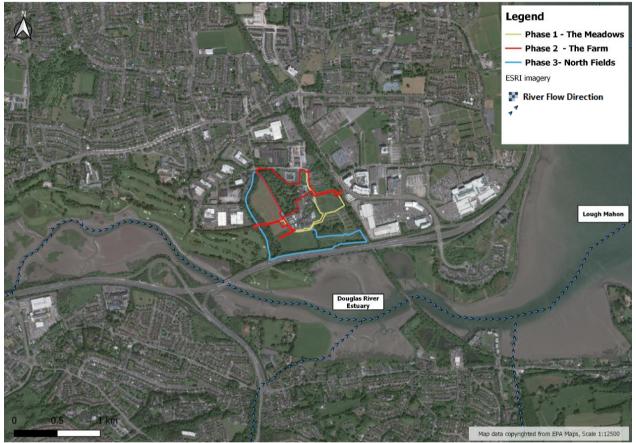



Figure 3-1: Hydrological Features of the Area

A geological desk study was conducted to gain an initial understanding of the existing ground conditions. Figure 3.2 is an extract from the Geological Survey of Ireland (GSI), where the soil permeability at the site is categorised as 'Moderate'. Further to this the groundwater vulnerability is categorised as 'High', see Figure 3.3. Groundwater vulnerability of an area is determined by the permeability and thickness of the subsoils overlying the groundwater, and the type of recharge sources (diffuse or point source). Therefore, areas where the infiltrating water and contaminants move faster from land to groundwater with high permeability are more vulnerable. Both sources of information would suggest that the site should have reasonable rates of permeability.

A ground investigation was undertaken by Priority Geotechnical Ltd. in January 2022 to establish subsurface conditions at the proposed project site. An infiltration test was conducted in one of the boreholes (BH03), see Appendix 6, which resulted in an infiltration rate of  $1.12 \times 10^{-3}$  m/s. An infiltration test was also conducted in one of the boreholes (BH05), on the Phase 1 site which saw no drop in water level after 60 minutes. Due to the inconsistency of results, we have conservatively assumed there will be no reduction in runoff volumes applied for the various SuDS measures. However, it has been assumed that the first flush, 5mm of rainfall



can be infiltrated to ground in specific areas designated for interception purpose, which is explained in greater detail below. Further infiltration testing in accordance with BRE 365 will be conducted in due course to determine accurate results.

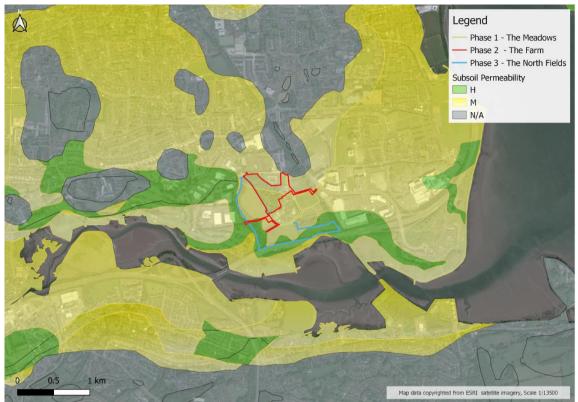



Figure 3-2: Soil Permeability



Figure 3-3: Groundwater Vulnerability



# 3.2 Existing Stormwater Network

Cork City Council drainage records indicate there is an existing 1350mmØ trunk storm sewer located approximately 200m to the west of the Phase 2 site, outside the boundary of the Applicant's lands, which runs in a north-south direction before crossing under the South Ring Road (N40) and discharging to the Douglas Estuary, see Appendix 7.

A feasibility study of the local area has revealed that there is an existing 225mmØ storm sewer in the road adjacent to the eastern boundary of the site (increasing downstream to a 450mm/750mmØ), which runs north to south before turning in a westerly direction and connecting to the 1350mmØ storm sewer described above, see as-built drawing in Appendix 3. This sewer was constructed under planning reference 03/27028.

# 3.3 Greenfield Runoff

The total developable site area is 4.28-hectares however this includes large open space and treed areas along the western and northern boundaries which will remain undeveloped and therefore will not be positively drained to the development surface water drainage system, and these areas are excluded from the surface water calculations of Qbar. In this context a figure of 1.48ha is used for the site area.

The greenfield runoff rate has been estimated using the HR Wallingford Greenfield runoff estimation online tool (report attached in Appendix 8). The online tool calculated a Qbar figure of 12.2 l/s (equivalent to 8.24 l/sec/ha). A summary of the design values output by the HR Wallingford Greenfield runoff estimation online tool is shown below:

| Design Criteria | Value |
|-----------------|-------|
| Site Area (ha)  | 1.48  |
| Soil Type       | 4     |
| SPR             | 0.47  |
| SAAR (mm)       | 1106  |
| 1 year factor   | 0.85  |
| 30-year factor  | 1.65  |
| 100-year factor | 1.95  |

#### Table 3-1: HR Wallingford Design Value Outputs

Given the proximity of the site to the Douglas Estuary the controlled outflow from the development has been set to the Q100 figure (the flow from the site in its greenfield condition in a 100-year storm event). This approach was proposed to Cork City Council Drainage Department and they were satisfied with the approach. See correspondence from Cork City Council in Appendix 9.

The growth factor to be applied when calculating Q100 from Qbar is 1.95 giving an upper limit to the discharge from the site at 23.79 l/sec. This is the value that will be used in later detailed design as the upper limit of surface water discharge from the development.



## 3.4 Proposed Development Surface Water Management System

The proposed surface water management system will, as far as is feasible, be designed in accordance with the principles of Sustainable Drainage Systems (SuDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS).

The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimise the impact of urbanisation by replicating the runoff characteristics of a greenfield site. The criteria provide a consistent approach to addressing both rate and volume of runoff as well as ensuring the environment is protected from pollution that is washed off roads and buildings. These drainage design criteria are as follows:

- Criterion 1 River Water Quality Protection
- Criterion 2 River Regime Protection
- Criterion 3 Flood Risk Assessment
- Criterion 4 River Flood Protection

The requirements of SuDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (In discussion with Cork City Council there is no requirement for long term storage)

#### 3.4.1 Layout of the Proposed Network

The proposed surface water network will include a storm drainage pipe network, attenuation storage structures and several SuDS features which will aid the reduction of runoff volumes by slowing surface water flows, providing the opportunity for evapotranspiration and providing the opportunity for infiltration to ground. Both the interception and attenuation storage requirements of GDSDS will be sufficiently met.

An assessment of the potential SuDS measures that could be incorporated within the site was conducted using the SuDS Manual, CIRIA 753 as guidance. The following SuDS features have been identified as applicable and will be provided within the proposed scheme:

- Green Roofs: will be provided throughout the site on flat roofs, where possible. The green roof will be an extensive type with sedum planting at the surface with a drainage layer beneath. The drainage layer will convey flows to discharge locations. It is not proposed to restrict the discharges from the roofs. Where possible discharges from roofs will be tied into planters or permeable paving substrata via diffusers.
- Permeable Paving: will be provided for all parking spaces and the creche play area. Permeable paving will be a Type B as per SuDS Manual, CIRIA 753, a combination of infiltration and piped drainage.
- Tree Pits/Bioretention Planters: will be provided in every feasible location where there is a proposed tree or planter. The tree pits will contain engineered soil filled tree boxes with drainage pipes beneath to link trees together and tie in with the proposed surface water sewer. The bioretention planters will consist of a shallow landscaped depression at the surface with a drainage layer beneath.
- StormTech Attenuation Tank: will be provided at the natural low point, at the southwest of the site for final storage of runoff volumes before discharging to the existing surface water network at a controlled rate.



The SuDS features will be designed to work in sequence thereby creating a treatment train. The proposed SuDS layout is shown on see Drawing No. 21207-JBB-PH2-XX-DR-C-04005 and the overall drainage arrangement is shown on Drawing No. 21207-JBB-PH2-XX-DR-C-04002, both included with this submission.

Manholes will be constructed on all pipe-runs at changes in sewer direction, changes in gradients, at significant sewer connections and at a maximum spacing of 90m on all straight sections of pipework The gravity surface water sewers have been designed using MicroDrainage design software and the outputs are included in Appendix 10 of this report.

| Area Type                          | Units (ha) |
|------------------------------------|------------|
| Total Site Area                    | 4.28       |
| Catchment Area                     | 1.48       |
| Green Roof                         | 0.13       |
| Permeable Paving                   | 0.01       |
| Tree Pits/Bioretention Planters    | 0.05       |
| Impermeable Area                   | 1.17       |
| Open Space Without Formal Drainage | 0.12       |
| Total Drained Area                 | 1.36       |

The contributing surface areas of the development has been split up and tabulated below:

#### Table 3-2: Surface Areas

#### **3.4.2** Interception Storage

In accordance with the requirements of GDSGS, at least 5mm, and preferably 10mm, of interception storage should be provided on site, where runoff to the receiving water can be prevented.

In the case of this Phase 2 development the total drained area is 1.36ha (13,600m<sup>2</sup>) as per Table 3.2 above. This results in a required interception storage volume of 68.0m<sup>3</sup> (13,600 X 0.005) The proposed interception storage will be provided by permeable paving, swales, tree pits and bioretention areas.

Green roofs are proposed throughout the development. These areas cover a total area of 1,300m<sup>2</sup>. The build-up in the green roof system will provide a minimum of 5mm of interception storage per 1m<sup>2</sup>, allowing for a total interception storage volume of 6.50m<sup>3</sup>.

Permeable surfaces including permeable paving, tree pits and bioretention planters are proposed throughout the development, for a total area is 600m<sup>2</sup>. The drainage pipe within the gravel bed for these areas will be set at 50mm above the bed formation giving (assumed 30% voids) interception stage equivalent to 15mm storage depth. Total interception volume provided in the permeable paving equals 9m<sup>3</sup>.

The proposed StormTech attenuation tank has a surface area of 420m<sup>2</sup>. Interception storage will be provided within the base of the tanks for a depth of 300mm depth of stone below the StormTech Chambers. Assuming the tanks have a void ratio of 43% (which is conservative), the total interception storage volume provided is 54.18m<sup>3</sup>.



The overall interception storage volume provided is therefore 69.68m<sup>3</sup> which represents approximately 5.1mm of interception storage which is above the required minimum provision as detailed above.

#### 3.4.3 Attenuation Storage

The proposed rate of surface water discharge from the development will be limited to that of the greenfield runoff for a 100-year storm event, as described in Section 4.2. Attenuation will be provided by StormTech attenuation chambers which will cater for the 100-year storm event with 10% climate change allowance added. The proposed surface water network will be contained in a single catchment, see Figure 3.4.

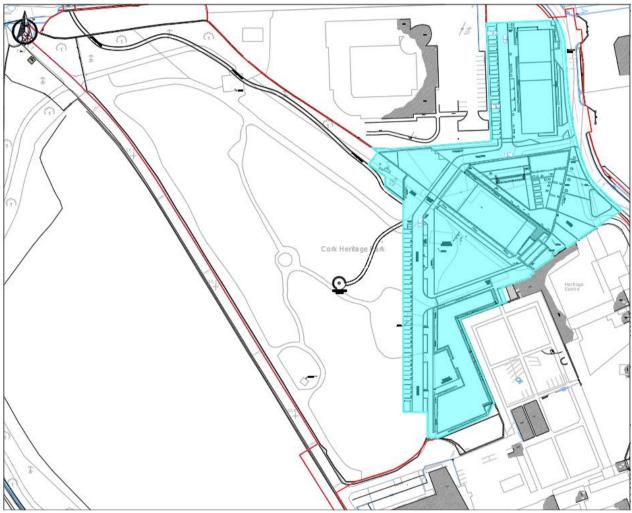



Figure 3-4: Surface Water Catchment Areas

The various SuDS components being proposed as part of the development will provide some attenuation, reduce flow rates and will disperse surface water via evapotranspiration and infiltration. However, at this stage of the design process, and to ensure a robust design, we are designing for the worst case and have not assumed a reduction in runoff volume from the various SuDS features and permeable surfaces in the attenuation storage calculations. This will be revisited closer to construction stage, subject to a granted planning permission.

Preliminary attenuation volume calculations, based on the above criteria, are summarised in Table 3.3. (See Appendix 11 for detailed calculations)



| Ref. | Catchment Area<br>(ha) | Q100 (l/s) | Required Storage<br>Volume<br>100yr +10% C.C.<br>(m³) | Provided<br>Attenuation<br>Volume (m <sup>3</sup> ) | Attenuation<br>Storage Type |
|------|------------------------|------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------|
| A    | 1.48                   | 23.79      | 501                                                   | 501                                                 | StormTech<br>Chambers       |



#### 3.4.4 Water Quality

The proposed development is residential and therefore is considered a low-level pollution hazard. Surface water runoff will be directed to the SuDS features as mentioned above and will therefore benefit from their pollutant removal qualities. However, to ensure water quality standards are met, we are proposing a hydrocarbon interceptor upstream of the StormTech attenuation tank.

#### Simple Index Approach

The effectiveness of the chosen SuDS components to achieve water quality can be assessed using the 'simple index approach' as described in CIRIA C753.

The simple index approach designates risk indices to the various areas of development to determine their possible pollutant contribution. Similarly, the SuDS features are designated mitigation indices and if the mitigation indices are larger than the risk indices the water quality objectives are considered satisfied.

| Land Use                                | Pollution Hazard<br>Level | Total Suspended<br>Solids (TSS) | Metals | Hydrocarbons |
|-----------------------------------------|---------------------------|---------------------------------|--------|--------------|
| Residential roofs                       | Very Low                  | 0.2                             | 0.2    | 0.05         |
| Driveways, car parks, low traffic roads | Low                       | 0.5                             | 0.4    | 0.4          |

#### Table 3-4: Pollution Hazard Indices for Different Land Uses

As can be seen in Table 3.5 below the total mitigation potential of the SuDS features far outweigh the contamination risks. Secondary (or further) stages in the treatment train are assigned 50% of the stated treatment indices value.

| SuDS Component         | TSS | Metals | Hydrocarbons |
|------------------------|-----|--------|--------------|
| Permeable paving       | 0.7 | 0.6    | 0.6          |
| Bioretention/Tree pits | 0.8 | 0.8    | 0.8          |
| Petrol Interceptor     | 0.4 | 0.4    | 0.4          |

Table 3-5: Indicative SuDS Mitigation Indices for Discharges to Surface Waters

#### 3.4.5 Amenity and Biodiversity

Meeting amenity and biodiversity standards is all about creating attractive, pleasant, and liveable urban areas for both people and for nature.

The proposed SuDS features within this development will not only be aesthetically pleasing, but they will also assist the creation of liveable habitats for nature by retaining rainfall at the source. The final details of these features will be drawn-up in consultation with the landscape design and ecological consultants on the design team.



### 3.5 Conveyance of Surface Water Outflow to Final Discharge Location

A new 225mmØ surface water outfall pipe will convey the restricted flows from the site in a south-westerly direction connecting to the existing 750mmØ surface water sewer upstream of its connection to the existing 1350mmØ surface water pipe which in turn discharges to the Douglas Estuary further to the south.

The controlled discharge from the proposed development (a maximum of 23.79 l/sec) will be minimal relative of the capacity of the existing 750mmØ and 1350mmØ pipes and given that this controlled outflow matches existing greenfield runoff from the site in a 100-year storm event these flows will not create a significant increase in the flow to the Douglas Estuary.

The proposed route of this sewer is shown on Drawing No. 21207-JBB-PH2-XX-DR-C-04006.



# SECTION 4: WATER SUPPLY

### 4.1 Existing Watermain Network

Cork City Council watermain records show there is an existing 150mmØ watermain in the roadway adjacent to the eastern boundary of the site, an existing 300mmØ watermain in the roadway to the north of the site and a 200mmØ watermain to the south. There is also an existing 1200mmØ trunk watermain running through the greenfield area in the ownership of the Applicant to the south of development site, see Appendix 12.

# 4.2 Pre-Connection Enquiry Stage

Following a Pre-Connection Enquiry, Irish Water (IW) have issued a Confirmation of Feasibility (COF) that the site can be serviced by its water infrastructure network. This COF is included in Appendix 4.

IW have advised that the connection is to be made to the existing 300mmØ ductile iron watermain in the roadway to the north of the site.

### 4.3 Design Acceptance Stage

The proposed design for water supply infrastructure within the development was progressed in accordance with Irish Water's Code of Practice for Water Infrastructure and was submitted to Irish Water for review and consideration for design acceptance as per the requirement of the SHD process. A Statement of Design Acceptance was issued by Irish Water and is included in Appendix 4.

To serve the development a 150mmØ watermain will be connected to the existing 300mmØ ductile iron watermain in the roadway to the north of the site. 40mmØ spurs will be taken off the proposed 150mmØ watermain and will feed a local cold water storage tank / booster station within the plant room of each apartment block. A bulk flow meter will be provided on each of the apartment block supply lines. From the plant rooms each of the residential and commercial units will be fed and metered individually.

Fire hydrants will be provided such that each building will be within 46m of a hydrant and these hydrants will be fully accessible to the fire service. Apartment buildings will be subject to Fire Safety Certificate applications and the provision of appropriate water supply for firefighting will be addressed in these applications.

The proposed water supply layout plans are shown on Drawing No. 21207-JBB-PH2-XX-DR-C-03002.

### 4.4 Loading Calculations

Water demand for the development is determined in accordance with Irish Water Code of Practice for Water Infrastructure.

Per-capita consumption = 150 litres/person/day

Average day / peak week demand (ADPWD) = 1.25 x ADDD

Peak Water Demand = 5.00 x ADPWD



| Use         | Floor<br>Area<br>(m²) | Occupancy<br>Rate | Population<br>(P) | Average<br>Daily<br>Demand<br>(I/day) | Average<br>Daily<br>Demand<br>(I/s) | Average<br>Day/Peak<br>Week<br>Demand<br>(I/s) | Peak<br>Hour<br>Water<br>Demand<br>(I/s) |
|-------------|-----------------------|-------------------|-------------------|---------------------------------------|-------------------------------------|------------------------------------------------|------------------------------------------|
| Residential | 140                   | 2.7               | 378               | 56,700                                | 0.656                               | 0.82                                           | 4.1                                      |
|             |                       | Table 4-1: Wat    |                   |                                       |                                     | Total                                          | 4.1                                      |

Table 4-1: Water Demand for Residential Development

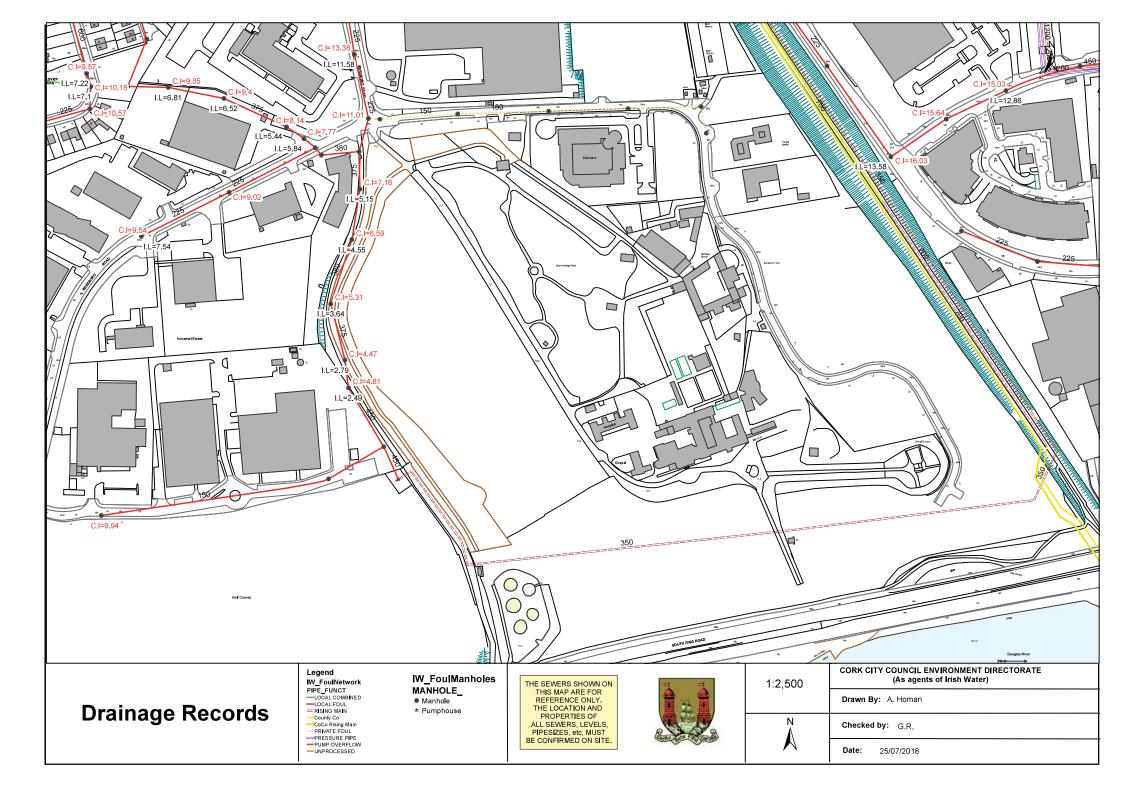
| Use                   | Floor<br>Area<br>(m²) | Occupancy<br>Rate      | Population<br>(P) | Average<br>Daily<br>Demand<br>(I/day) | Average<br>Daily<br>Demand<br>(I/s) | Average<br>Day/Peak<br>Week<br>Demand<br>(I/s) | Peak<br>Hour<br>Water<br>Demand<br>(I/s) |
|-----------------------|-----------------------|------------------------|-------------------|---------------------------------------|-------------------------------------|------------------------------------------------|------------------------------------------|
| Creche                | 242                   | 31                     | 31                | 4,650                                 | 0.054                               | 0.068                                          | 0.340                                    |
|                       |                       | 1 per 20m <sup>2</sup> | 3                 | 450                                   | 0.027                               |                                                |                                          |
| Café                  | 65                    | 1 per 5m <sup>2</sup>  | 13                | 1,950                                 |                                     | 0.035                                          | 0.175                                    |
| Communal<br>Workspace | 180                   | 24                     | 24                | 3,600                                 | 0.042                               | 0.053                                          | 0.265                                    |
| Gym                   | 108                   | 1 per 5m2              | 22                | 3,300                                 | 0.038                               | 0.048                                          | 0.240                                    |
| Lounge                | 85                    | 30                     | 30                | 4,500                                 | 0.052                               | 0.065                                          | 0.325                                    |
| Function<br>Room      | 70                    | 30                     | 30                | 4,500                                 | 0.052                               | 0.065                                          | 0.325                                    |
|                       |                       |                        |                   |                                       |                                     | Total                                          | 1.67                                     |
|                       |                       |                        |                   |                                       | tal (Based on <sup>-</sup>          | 12 Hour Day)                                   | 0.835                                    |

Table 4-2: Water Demand for Commercial development





#### PROPOSED SITE LAYOUT PLAN






# Appendix 2

CORK CITY COUNCIL - EXISTING WASTEWATER NETWORK







#### AS-BUILT LOCAL DRAINAGE NETWORK





| a. a.                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | NOTES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | To be read in conjunction with all relevant drawings and specification.     Do roll scale if in doubt mix.     All dimensions to be checked on pile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | . At unersons to be checked on part.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Legend                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Foul & Sto                            | orm<br>Site Connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | and connections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O-Existing Se                         | ervices Connected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | υ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 10 m<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | ب می ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| States of the second                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Anna Anna A                           | 5-1-1 Brill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - Cli                                 | With call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| m                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - Janu                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10<br>8.354<br>6.850                  | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 088.3                               | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1510<br>- 6273<br>- 6160              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | CITY CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | CC CILINCE COLORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | Same The Contact ( Same the D) way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 557 308 34 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 0.         ISSUED FOR CONSTRUCTION         N.M. 0.0°D. 11.04.°06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | 1. No desimilation     1. No desimilatio |
|                                       | A. (abb) (abb)     A. (abb |
|                                       | 1. No desimilation     1. No desimilatio |
|                                       | 1. To Construct the Construction     1. To Construct the Construct the Construction     1. To Construct the Construct the Construction     1. To Construct the Con |
|                                       | 1. No controlocito     1. No controlocit |

# Appendix 4

**IRISH WATER – CONFIRMATION OF FEASIBILITY** 

**IRISH WATER – STATEMENT OF DESIGN ACCEPTANCE** 





Tim Finn

JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island Co. Cork T45KH74

Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí Irish Water

Uisce Éireann

9 February 2022

www.water.ie

PO Box 448, South City Delivery Office, Cork City.

#### Re: CDS21001326 pre-connection enquiry - Subject to contract | Contract denied

Connection for Multi/Mixed Use Development of 140 unit(s) and creche at Bessboro, Blackrock, Co. Cork

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Bessboro, Blackrock, Co. Cork (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

| SERVICE               | OUTCOME OF PRE-CONNECTION ENQUIRY<br><u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u><br><u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u><br><u>TO PROCEED.</u>                                                                                                                                                                                                                                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Connection      | Feasible without infrastructure upgrade by Irish Water                                                                                                                                                                                                                                                                                                                                                                  |
| Wastewater Connection | Feasible Subject to upgrades                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | SITE SPECIFIC COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water Connection      | Connection to be made to the existing 300mm DI adjacent to site on<br>Bessboro Rd.<br>No works to interfere with existing 1200mm trunk main. No diversions of this<br>main shall be permitted.                                                                                                                                                                                                                          |
| Wastewater Connection | Bessborough WWPS is almost at design loading capacity. Irish Water has a project underway to replace the existing pumps which will increase the pump rate and provide sufficient capacity to accommodate this development. This upgrade project is scheduled to be completed by Q4 2022 (this may be subject to change) and the proposed connection could be completed as soon as possibly practicable after this date. |

Stlårthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Dawn O'Driscoll, Maria O'Dwyer Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

|                                         | h Water nates that the scale of this development distates that it is subject                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategic Housing bevelopment but State | The Water notes that the scale of this development dictates that it is subject<br>the Strategic Housing Development planning process. In advance of<br>bmitting your full application to An Bord Pleanala for assessment, you<br>ust have reviewed this development with Irish Water and received a<br>atement of Design Acceptance in relation to the layout of water and<br>stewater services. |

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.



#### The map included below outlines the current Irish Water infrastructure adjacent to your site:

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available

information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

#### **General Notes:**

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- 2) This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.
- The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at <a href="https://www.water.ie/connections/get-connected/">https://www.water.ie/connections/get-connected/</a>
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email <u>datarequests@water.ie</u>
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Marko Komso from the design team on 022 54611 or email mkomso@water.ie For further information, visit **www.water.ie/connections.** 

Yours sincerely,

Gronne Maeeis

Yvonne Harris Head of Customer Operations Diarmuid O' Brien JB Barry & Partners 3 Eastgate, Eastgate Business Park Little Island, Co. Cork T45KH74

25 February 2022

# Re: Design Submission for Bessboro, Blackrock, Co. Cork (the "Development") (the "Design Submission") / Connection Reference No: CDS21001328

Dear Diarmuid O' Brien,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document\_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

If you have any further questions, please contact your Irish Water representative: Name: Kyle Jackson Email: Kyle.jackson@water.ie

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations



Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie



FOUL SEWER - MICRODRAINAGE CALCULATIONS



| J.B. Barry &                                                         | Partner                                                                                           | s Lta                                                                                                            |                                                                                                     |                                                                                                               |                                                                                                     |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              | Page 1                                                                                                                             |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Classon House                                                        |                                                                                                   |                                                                                                                  |                                                                                                     |                                                                                                               | 202                                                                                                 | 17 - Bess                                                                                                                           | borou                                                                                         | gh SH                                                                                    | D                                                                                                 |                                                                                                                              |                                                                                                                                    |
| Dundrum Busin                                                        | ess Par                                                                                           | k                                                                                                                |                                                                                                     |                                                                                                               | (Th                                                                                                 | (The Farm)                                                                                                                          |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
| Dublin 14                                                            |                                                                                                   |                                                                                                                  | Fou                                                                                                 | l Sewer                                                                                                       |                                                                                                     |                                                                                                                                     |                                                                                               |                                                                                          | – Micro                                                                                           |                                                                                                                              |                                                                                                                                    |
| Date 21/02/20                                                        | 22 11:0                                                                                           |                                                                                                                  | Des                                                                                                 | igned by                                                                                                      | DOB                                                                                                 |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
| File 21207-JB                                                        | в-рн2-х                                                                                           | X-CA-                                                                                                            |                                                                                                     |                                                                                                               | Che                                                                                                 | cked by                                                                                                                             |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              | Drainag                                                                                                                            |
| Innovyze                                                             |                                                                                                   |                                                                                                                  |                                                                                                     |                                                                                                               | Net                                                                                                 | work 2020                                                                                                                           | .1                                                                                            |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  |                                                                                                     | -                                                                                                             | 20111 01                                                                                            |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  |                                                                                                     | <u>+</u>                                                                                                      | YOUL SE                                                                                             | EWERAGE DE                                                                                                                          | <u>ISIGN</u>                                                                                  |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  | ח                                                                                                   | esian                                                                                                         | Crite                                                                                               | ria for Fo                                                                                                                          | oul -                                                                                         | Main                                                                                     |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  | <u></u>                                                                                             |                                                                                                               | 0                                                                                                   |                                                                                                                                     | _ ••                                                                                          |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  | Pipe                                                                                                | Sizes                                                                                                         | STANDA                                                                                              | RD Manhole                                                                                                                          | Sizes                                                                                         | STANDA                                                                                   | ARD                                                                                               |                                                                                                                              |                                                                                                                                    |
|                                                                      | Indust                                                                                            | nial El                                                                                                          | OW (1 /                                                                                             | c/hal                                                                                                         | 0.00                                                                                                | لد لہ ٦                                                                                                                             | . <b>F</b> low                                                                                | / 01:                                                                                    | ato (                                                                                             | Shango (%)                                                                                                                   | 0                                                                                                                                  |
| 1                                                                    | ndustria                                                                                          |                                                                                                                  |                                                                                                     |                                                                                                               | 0.00                                                                                                |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   | Change (%)<br>Height (m) 0.2                                                                                                 |                                                                                                                                    |
|                                                                      | low Per                                                                                           |                                                                                                                  |                                                                                                     |                                                                                                               |                                                                                                     |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   | Height (m) 4.0                                                                                                               |                                                                                                                                    |
|                                                                      |                                                                                                   |                                                                                                                  |                                                                                                     |                                                                                                               |                                                                                                     |                                                                                                                                     |                                                                                               |                                                                                          |                                                                                                   |                                                                                                                              |                                                                                                                                    |
|                                                                      |                                                                                                   | Persor                                                                                                           | ns per                                                                                              | House                                                                                                         | 2.70                                                                                                | Min Design                                                                                                                          | Depth                                                                                         | for Op                                                                                   | otimis                                                                                            | sation (m) 1.2                                                                                                               | 200                                                                                                                                |
|                                                                      |                                                                                                   | Domest                                                                                                           | ic (1/                                                                                              | s/ha)                                                                                                         | 0.00                                                                                                | Min Vel                                                                                                                             | for Au                                                                                        | to Des                                                                                   | sign d                                                                                            | only (m/s) 0                                                                                                                 | .75                                                                                                                                |
|                                                                      | Domesti                                                                                           | Domest                                                                                                           | ic (1/                                                                                              | s/ha)                                                                                                         |                                                                                                     | Min Vel                                                                                                                             | for Au                                                                                        | to Des                                                                                   | sign d                                                                                            | only (m/s) 0                                                                                                                 |                                                                                                                                    |
|                                                                      | Domesti                                                                                           | Domest                                                                                                           | ic (1/                                                                                              | s/ha)<br>actor                                                                                                | 0.00<br>6.00                                                                                        | Min Vel<br>Min Sl                                                                                                                   | for Au<br>ope fo                                                                              | to Des<br>r Opti                                                                         | sign d                                                                                            | only (m/s) 0                                                                                                                 | .75                                                                                                                                |
|                                                                      | Domesti                                                                                           | Domest                                                                                                           | ic (1/                                                                                              | s/ha)<br>actor                                                                                                | 0.00<br>6.00                                                                                        | Min Vel                                                                                                                             | for Au<br>ope fo                                                                              | to Des<br>r Opti                                                                         | sign d                                                                                            | only (m/s) 0                                                                                                                 | .75                                                                                                                                |
|                                                                      | Domesti                                                                                           | Domest                                                                                                           | ic (1/                                                                                              | s/ha)<br>actor                                                                                                | 0.00<br>6.00                                                                                        | Min Vel<br>Min Sl                                                                                                                   | for Au<br>ope fo                                                                              | to Des<br>r Opti                                                                         | sign d                                                                                            | only (m/s) 0                                                                                                                 | .75                                                                                                                                |
|                                                                      | Domesti                                                                                           | Domest                                                                                                           | ic (l/<br>Flow F                                                                                    | s/ha)<br>'actor<br>De                                                                                         | 0.00<br>6.00<br>signed 1                                                                            | Min Vel<br>Min Sl                                                                                                                   | for Au<br>ope fo<br>Soffits                                                                   | to Des<br>r Opti                                                                         | sign d<br>.misat                                                                                  | only (m/s) 0                                                                                                                 | .75                                                                                                                                |
| PN                                                                   |                                                                                                   | Domest<br>c Peak                                                                                                 | Lic (l/<br>Flow F<br><u>Netv</u>                                                                    | s/ha)<br>'actor<br>De<br>work I                                                                               | 0.00<br>6.00<br>signed v                                                                            | Min Vel<br>Min Sl<br>with Level S<br>Table for                                                                                      | for Au<br>ope fo<br>Soffits                                                                   | to Des<br>r Opti<br>s<br><u>– Ma</u>                                                     | sign d<br>.misat                                                                                  | only (m/s) 0<br>tion (1:X)                                                                                                   | .75<br>500                                                                                                                         |
| PN                                                                   |                                                                                                   | Domest<br>c Peak                                                                                                 | Lic (l/<br>Flow F<br><u>Netv</u>                                                                    | s/ha)<br>Vactor<br>De<br>Vork I<br>Area                                                                       | 0.00<br>6.00<br>signed 1                                                                            | Min Vel<br>Min Sl<br>with Level S<br>Table for                                                                                      | for Au<br>ope fo<br>Soffits<br>Foul<br>k                                                      | to Des<br>r Opti                                                                         | aign o<br>misat<br><u>ain</u><br>DIA                                                              | only (m/s) 0                                                                                                                 | .75<br>500                                                                                                                         |
|                                                                      | Length<br>(m)                                                                                     | Domest<br>c Peak<br>Fall<br>(m)                                                                                  | Netw<br>Slope<br>(1:X)                                                                              | s/ha)<br>'actor<br>De<br>vork I<br>Area<br>(ha)                                                               | 0.00<br>6.00<br>signed to<br>Design<br>Houses                                                       | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)                                                                | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)                                              | to Des<br>r Opti<br>- Ma<br>HYD<br>SECT                                                  | sign (<br>misat<br><u>tin</u><br>DIA<br>(mm)                                                      | only (m/s) 0<br>tion (1:X) 9<br>Section Type                                                                                 | .75<br>500<br>Auto<br>Design                                                                                                       |
|                                                                      | Length                                                                                            | Domest<br>c Peak<br>Fall<br>(m)                                                                                  | Netw<br>Slope<br>(1:X)                                                                              | s/ha)<br>'actor<br>De<br>vork I<br>Area<br>(ha)                                                               | 0.00<br>6.00<br>signed v                                                                            | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)                                                                | for Au<br>ope fo<br>Soffits<br>Foul<br>k                                                      | to Des<br>r Opti<br>- Ma<br>HYD<br>SECT                                                  | sign (<br>misat<br><u>tin</u><br>DIA<br>(mm)                                                      | only (m/s) 0<br>tion (1:X)                                                                                                   | .75<br>500<br><b>Auto</b>                                                                                                          |
| F1.00                                                                | Length<br>(m)                                                                                     | Domest<br>c Peak<br>Fall<br>(m)<br>2.120                                                                         | Netw<br>Slope<br>(1:X)<br>31.8                                                                      | s/ha)<br>dactor<br>De<br>work I<br>Area<br>(ha)<br>0.000                                                      | 0.00<br>6.00<br>signed to<br>Design<br>Houses                                                       | Min Vel<br>Min Sl<br>with Level S<br><u>Table for</u><br>Base<br>Flow (1/s)<br>1.6                                                  | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)                                              | to Des<br>r Opti<br>s<br><u>- Ma</u><br>HYD<br>SECT<br>o                                 | aign d<br>misat<br>ain<br>DIA<br>(mm)<br>225                                                      | only (m/s) 0<br>tion (1:X) 9<br>Section Type                                                                                 | .75<br>500<br>Auto<br>Design                                                                                                       |
| F1.00<br>F2.00                                                       | Length<br>(m)<br>0 67.499<br>0 25.192                                                             | Domest<br>c Peak<br><b>Fall</b><br>(m)<br>2.120<br>0.420                                                         | Netw<br>Slope<br>(1:X)<br>31.8<br>60.0                                                              | s/ha)<br>actor<br>De<br>work I<br>Area<br>(ha)<br>0.000<br>0.000                                              | 0.00<br>6.00<br>signed to<br>Design<br>Houses<br>0<br>0                                             | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1                                                  | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500                            | to Des<br>r Opti<br>s<br><u>- Ma</u><br><b>HYD</b><br>SECT<br>o<br>o                     | aign o<br>misat<br><u>ain</u><br>DIA<br>(mm)<br>225<br>225                                        | only (m/s) 0<br>tion (1:X)<br>Section Type<br>Pipe/Conduit<br>Pipe/Conduit                                                   | .75<br>500<br>Auto<br>Design<br>T                                                                                                  |
| F1.00<br>F2.00<br>F1.00                                              | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040                                                 | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588                                                       | Netw<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0                                                      | s/ha)<br>actor<br>De<br>work I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000                                     | 0.00<br>6.00<br>signed to<br>Design<br>Houses<br>0<br>0<br>0                                        | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0                                           | for Au<br>ope fo<br>Soffits<br>Foul<br><b>k</b><br>(mm)<br>1.500<br>1.500                     | to Des<br>r Opti<br>s<br><u>- Ma</u><br>HYD<br>SECT<br>o<br>o<br>o                       | aign o<br>misat<br><u>ain</u><br>DIA<br>(mm)<br>225<br>225<br>225                                 | Section Type<br>Pipe/Conduit<br>Pipe/Conduit                                                                                 | .75<br>500<br>Auto<br>Design<br>0<br>0<br>0<br>0                                                                                   |
| F1.00<br>F2.00<br>F1.00                                              | Length<br>(m)<br>0 67.499<br>0 25.192                                                             | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588                                                       | Netw<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0                                                      | s/ha)<br>actor<br>De<br>work I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000                                     | 0.00<br>6.00<br>signed to<br>Design<br>Houses<br>0<br>0                                             | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0                                           | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500                            | to Des<br>r Opti<br>s<br><u>- Ma</u><br><b>HYD</b><br>SECT<br>o<br>o                     | aign o<br>misat<br><u>ain</u><br>DIA<br>(mm)<br>225<br>225<br>225                                 | only (m/s) 0<br>tion (1:X)<br>Section Type<br>Pipe/Conduit<br>Pipe/Conduit                                                   | .75<br>500<br>Auto<br>Design<br>T                                                                                                  |
| F1.00<br>F2.00<br>F1.00<br>F1.00                                     | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040                                                 | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588<br>0.603                                              | Netw<br>Netw<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0<br>47.2                                      | s/ha)<br>actor<br>De<br>work I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000                                     | 0.00<br>6.00<br>signed to<br>Design<br>Houses<br>0<br>0<br>0                                        | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0<br>0.0                                    | for Au<br>ope fo<br>Soffits<br>Foul<br><b>k</b><br>(mm)<br>1.500<br>1.500                     | to Des<br>r Opti<br>s<br><u>- Ma</u><br><b>HYD</b><br>SECT<br>o<br>o<br>o<br>o           | aign o<br>misat<br><u>nisat</u><br>DIA<br>(mm)<br>225<br>225<br>225<br>225                        | Section Type<br>Pipe/Conduit<br>Pipe/Conduit                                                                                 | .75<br>500<br>Design<br>0<br>0<br>0<br>0                                                                                           |
| F1.00<br>F2.00<br>F1.00<br>F1.00<br>F3.00                            | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040<br>2 28.445<br>0 30.656                         | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588<br>0.603<br>0.511                                     | Netw<br>Flow F<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0<br>47.2<br>60.0                            | s/ha)<br>actor<br>De<br>work I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                   | 0.00<br>6.00<br>signed v<br>Design<br>Houses<br>0<br>0<br>0<br>0<br>0                               | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0<br>0.0<br>0.0                             | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500<br>1.500<br>1.500          | to Des<br>r Opti<br>s<br><u>- Ma</u><br>HYD<br>SECT<br>0<br>0<br>0<br>0<br>0             | aign o<br>misat<br>nisat<br>01A<br>(mm)<br>225<br>225<br>225<br>225<br>255                        | Section Type<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit                                 | .75<br>500<br><b>Auto</b><br>Design<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| F1.00<br>F2.00<br>F1.00<br>F1.00<br>F3.00<br>F1.00                   | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040<br>2 28.445<br>0 30.656<br>3 64.774             | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588<br>0.603<br>0.511<br>0.432                            | Netw<br>Flow F<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0<br>47.2<br>60.0<br>149.9                   | s/ha)<br>Pactor<br>De<br>vork I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000         | 0.00<br>6.00<br>signed v<br>Design<br>Houses<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0<br>0.0<br>0.0<br>0.1<br>2.0               | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500<br>1.500<br>1.500<br>1.500 | to Des<br>r Opti<br>s<br><u>- Ma</u><br>HYD<br>SECT<br>0<br>0<br>0<br>0<br>0             | aign o<br>misat<br>nisat<br>nisat<br><b>DIA</b><br>(mm)<br>225<br>225<br>225<br>225<br>255<br>255 | Section Type<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit | .75<br>500<br>Auto<br>Design<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        |
| F1.00<br>F2.00<br>F1.00<br>F1.00<br>F3.00<br>F1.00<br>F1.00          | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040<br>2 28.445<br>0 30.656<br>3 64.774<br>4 59.191 | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588<br>0.603<br>0.511<br>0.432<br>0.432<br>0.423          | Netw<br>Flow F<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0<br>47.2<br>60.0<br>149.9<br>139.9          | s/ha)<br>Pactor<br>De<br>vork I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000         | 0.00<br>6.00<br>signed v<br>Design<br>Houses<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0<br>0.0<br>0.1<br>2.0<br>0.0               | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500<br>1.500<br>1.500<br>1.500 | to Des<br>r Opti<br>s<br><u>- Ma</u><br>HYD<br>SECT<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | aign o<br>misat<br>nisat<br>nisat<br><b>DIA</b><br>(mm)<br>225<br>225<br>225<br>225<br>255<br>255 | Section Type<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit | .75<br>500<br>Auto<br>Design<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        |
| F1.00<br>F2.00<br>F1.00<br>F1.00<br>F3.00<br>F1.00<br>F1.00<br>F1.00 | Length<br>(m)<br>0 67.499<br>0 25.192<br>1 27.040<br>2 28.445<br>0 30.656<br>3 64.774             | Domest<br>c Peak<br>Fall<br>(m)<br>2.120<br>0.420<br>0.588<br>0.603<br>0.511<br>0.432<br>0.432<br>0.423<br>0.164 | Netw<br>Flow F<br>Slope<br>(1:X)<br>31.8<br>60.0<br>46.0<br>47.2<br>60.0<br>149.9<br>139.9<br>149.4 | s/ha)<br>actor<br>De<br>vork I<br>Area<br>(ha)<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 0.00<br>6.00<br>signed v<br>Design<br>Houses<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | Min Vel<br>Min Sl<br>with Level S<br>Table for<br>Base<br>Flow (1/s)<br>1.6<br>0.1<br>0.0<br>0.0<br>0.0<br>0.1<br>2.0<br>0.0<br>1.0 | for Au<br>ope fo<br>Soffits<br>Foul<br>k<br>(mm)<br>1.500<br>1.500<br>1.500<br>1.500<br>1.500 | to Des<br>r Opti<br>s<br><u>- Ma</u><br><b>HYD</b><br>SECT<br>0<br>0<br>0<br>0<br>0<br>0 | aign o<br>misat<br>misat<br>DIA<br>(mm)<br>225<br>225<br>225<br>255<br>255<br>255<br>255          | Section Type<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit<br>Pipe/Conduit | .75<br>500<br>Auto<br>Design<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0        |

Network Results Table

0.0 1.500 o 225 Pipe/Conduit 0.0 1.500 o 225 Pipe/Conduit

0.0 1.500 o 225 Pipe/Conduit 0.0 1.500 o 225 Pipe/Conduit

æ

് ക്

F4.00017.4030.29060.00.0000F4.00112.1280.24350.00.0000F4.0029.4950.46220.50.0000

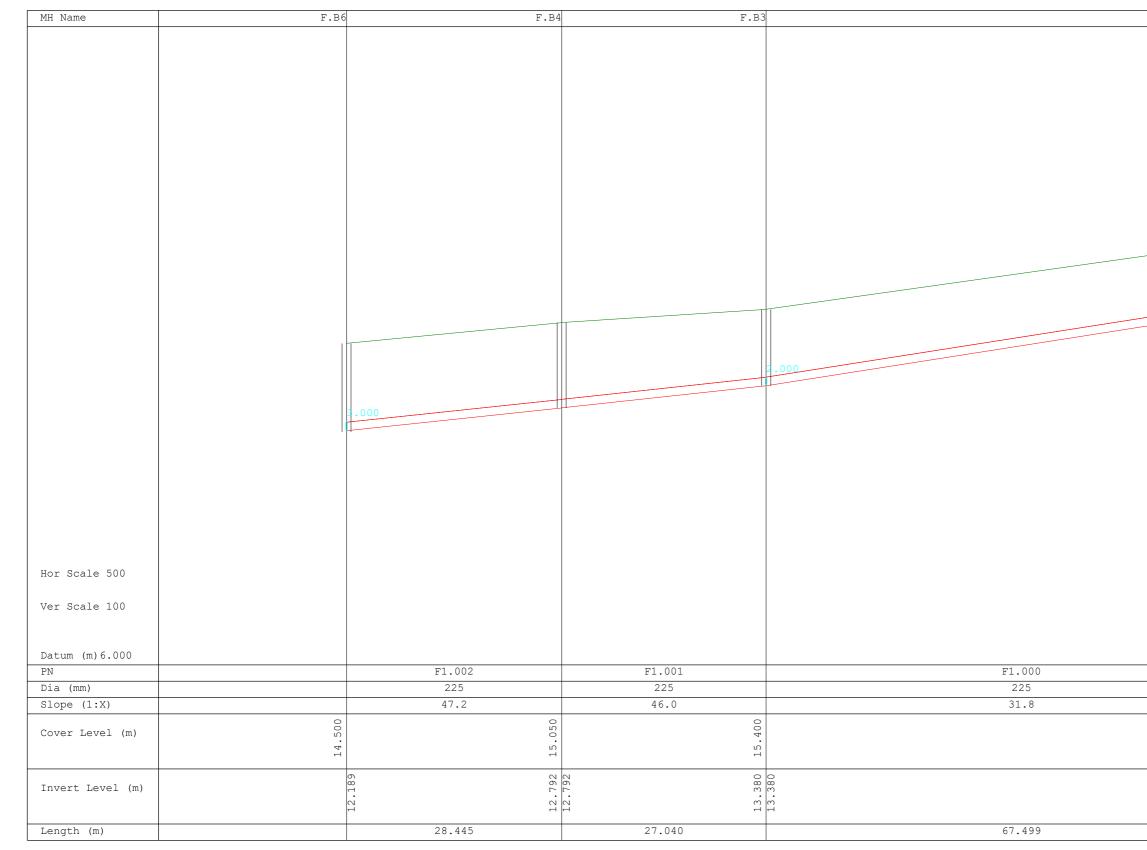
#### US/IL $\Sigma$ Area $\Sigma$ Base $\Sigma$ Hse Add Flow P.Dep P.Vel Vel Cap Flow PN (ha) Flow (l/s) (1/s) (mm) (m/s) (m/s) (1/s) (1/s) (m) F1.000 15.500 0.000 1.6 0 0.0 22 0.79 2.04 81.0 1.6 F2.000 13.800 0.000 0.1 0 0.0 7 0.26 1.48 59.0 0.1 1.7 0.0 25 0.71 1.69 67.4 F1.001 13.380 0.000 0 1.7 F1.002 12.792 0.000 1.7 0 0.0 25 0.71 1.67 66.5 1.7 F3.000 12.700 0.000 0.1 0 0.0 7 0.25 1.61 82.3 0.1 F1.003 12.159 0.000 3.8 0 0.0 47 0.59 1.02 51.9 3.8 F1.004 11.727 0.000 3.8 0 0.0 46 0.61 1.05 53.8 3.8 F1.005 11.304 0.000 4.8 0.0 52 0.64 1.02 52.0 0 4.8 F1.006 11.140 0.000 50 0.69 1.13 57.9 4.8 0 0.0 4.8 F4.000 11.970 0.000 0.0 0 0.00 1.48 59.0 0.0 0 0.0 F4.001 11.680 0.000 0 0.00 1.63 64.6 0.0 0 0.0 0.0 F4.002 11.437 0.000 0.0 0 0.0 0 0.00 2.54 101.0 0.0

©1982-2020 Innovyze

| J.B. Barry & Partners Ltd |                         | Page 2   |
|---------------------------|-------------------------|----------|
| Classon House             | 20217 - Bessborough SHD |          |
| Dundrum Business Park     | (The Farm)              |          |
| Dublin 14                 | Foul Sewer              | Mirro    |
| Date 21/02/2022 11:08     | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Diamaye  |
| Innovyze                  | Network 2020.1          |          |

#### Network Design Table for Foul - Main

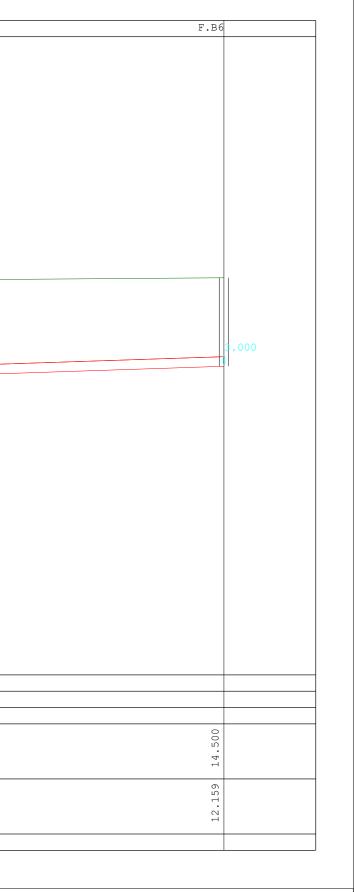
| PN     | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | Area<br>(ha) | Houses | ase<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|---------------|-------------|----------------|--------------|--------|--------------|-----------|-------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F1.007 | 7.397         | 0.200       | 37.0           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F1.008 | 12.727        | 0.350       | 36.4           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| F1.009 | 26.235        | 1.251       | 21.0           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F1.010 | 36.829        | 1.632       | 22.6           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | - Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F1.011 | 38.614        | 1.464       | 26.4           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F1.012 | 43.328        | 1.478       | 29.3           | 0.000        | 0      | 8.8          | 1.500     | 0           | 255         | Pipe/Conduit | ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| F1.013 | 45.563        | 0.455       | 100.1          | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | - Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| F1.014 | 62.433        | 2.044       | 30.5           | 0.000        | 0      | 6.1          | 1.500     | 0           | 255         | Pipe/Conduit | - The second sec |
| F1.015 | 19.092        | 0.475       | 40.2           | 0.000        | 0      | 0.0          | 1.500     | 0           | 255         | Pipe/Conduit | Ū,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |


#### Network Results Table

| PN     | US/IL<br>(m) | Σ Area<br>(ha) | Σ Base<br>Flow (l/s) |   | Add Flow<br>(1/s) | P.Dep<br>(mm) | P.Vel<br>(m/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|--------|--------------|----------------|----------------------|---|-------------------|---------------|----------------|--------------|--------------|---------------|
| F1.007 | 10.945       | 0.000          | 4.8                  | 0 | 0.0               | 37            | 1.04           | 2.05         | 104.9        | 4.8           |
| F1.008 | 10.745       | 0.000          | 4.8                  | 0 | 0.0               | 37            | 1.04           | 2.07         | 105.8        | 4.8           |
| F1.009 | 10.395       | 0.000          | 4.8                  | 0 | 0.0               | 32            | 1.27           | 2.73         | 139.4        | 4.8           |
| F1.010 | 9.144        | 0.000          | 4.8                  | 0 | 0.0               | 33            | 1.23           | 2.63         | 134.3        | 4.8           |
| F1.011 | 7.512        | 0.000          | 4.8                  | 0 | 0.0               | 34            | 1.17           | 2.43         | 124.2        | 4.8           |
| F1.012 | 6.048        | 0.000          | 13.6                 | 0 | 0.0               | 58            | 1.54           | 2.31         | 117.8        | 13.6          |
| F1.013 | 4.570        | 0.000          | 13.6                 | 0 | 0.0               | 80            | 0.99           | 1.25         | 63.6         | 13.6          |
| F1.014 | 4.115        | 0.000          | 19.7                 | 0 | 0.0               | 71            | 1.69           | 2.26         | 115.4        | 19.7          |
| F1.015 | 2.071        | 0.000          | 19.7                 | 0 | 0.0               | 77            | 1.53           | 1.97         | 100.6        | 19.7          |

#### Free Flowing Outfall Details for Foul - Main

| Outfall<br>Pipe Number |       | Level<br>(m) |       | Min<br>Level<br>(m) | , |   |
|------------------------|-------|--------------|-------|---------------------|---|---|
| F1.015                 | F.A33 | 3.800        | 1.596 | 0.000               | 0 | 0 |


| J.B. Barry & Partners Ltd                                              |                         | Page 1   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Foul Sewer              | Micro    |
| Date 21/02/2022 11:09                                                  | Designed by DOB         |          |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Drainage |
| Innovyze                                                               | Network 2020.1          |          |

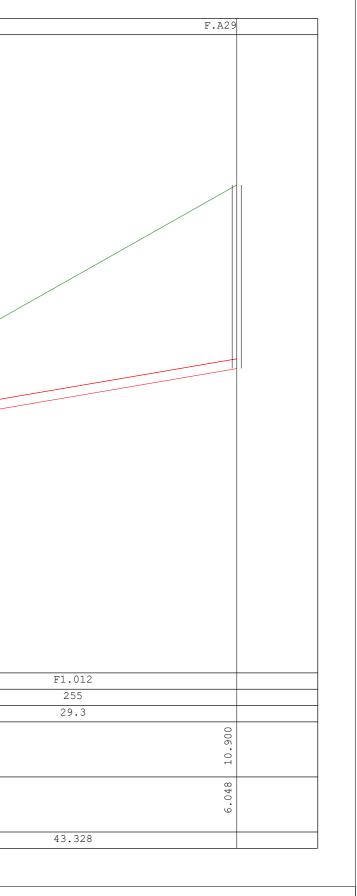


| F.B1   |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
| 000    |  |
| 17.300 |  |
|        |  |
| 0      |  |
| 15.500 |  |
| L5.    |  |
|        |  |
|        |  |
|        |  |
|        |  |

| J.B. Barry & Partners Ltd                                              |                         | Page 2   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Foul Sewer              | Micro    |
| Date 21/02/2022 11:09                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye  |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name          | F.B9     | F.B8     |        | F.B7             |      |
|------------------|----------|----------|--------|------------------|------|
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
| Hor Scale 500    |          |          |        |                  |      |
|                  |          |          |        |                  |      |
| Ver Scale 100    |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
|                  |          |          |        |                  |      |
| Datum (m)4.000   |          |          |        |                  |      |
| PN               |          | 1.005    | F1.004 |                  | F1.0 |
| Dia (mm)         |          | 255      | 255    |                  | 255  |
| Slope (1:X)      | 1        | 49.4     | 139.9  |                  | 149. |
|                  | 0        | 0        |        | 0                |      |
| Cover Level (m)  | 00       | 09       |        | 40               |      |
|                  | 13.000   | 13.600   |        | 14.400           |      |
|                  |          |          |        |                  |      |
|                  | 40       | 4 C C    |        | 27               |      |
|                  |          | <u> </u> |        | 1 1              |      |
| Invert Level (m) | <b>F</b> | • •      |        | •   •            |      |
| Invert Level (m) | 11       |          |        |                  |      |
| Invert Level (m) | 11.140   | 4.505    | 59.191 | 11.727<br>11.727 | 64.7 |




| J.B. Barry & Partners Ltd                                              |                         | Page 3   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Foul Sewer              | Micro    |
| Date 21/02/2022 11:09                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye  |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name          | F.A29  | F.B17          | F.B16          | F.B15  | F.B1   | 14 F             |
|------------------|--------|----------------|----------------|--------|--------|------------------|
| Hor Scale 500    |        |                |                |        |        |                  |
| Ver Scale 100    |        |                |                |        |        |                  |
| Datum (m)1.000   |        | F1.011         | F1.010         | F1.009 | F1.008 | F1.              |
| PN<br>Dia (mm)   |        |                | 255            |        |        |                  |
| Dia (mm)         |        | 255            |                | 255    | 255    | 25               |
| Slope (1:X)      |        | 26.4           | 22.6           | 21.0   | 36.4   | 37               |
| Cover Level (m)  | 10.900 |                | 10.600         | 12.400 |        | 12.200           |
| Invert Level (m) |        | 6.048<br>7.512 | 7.512<br>9.144 | 9.144  | 10.395 | 10.745<br>10.745 |
|                  |        |                |                |        |        |                  |

| F.B13  | F.B9   |  |
|--------|--------|--|
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        | 4.002  |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
|        |        |  |
| F1.007 | F1.006 |  |
| 255    | 255    |  |
| 37.0   | 120.8  |  |
| 12.400 | 13.000 |  |
| 2.     |        |  |
|        |        |  |
| 10.945 | 40     |  |
| 6.0    | 10.945 |  |
| н<br>Г |        |  |
|        |        |  |
| 7.397  | 23.563 |  |

| J.B. Barry & Partners Ltd                                              |                         | Page 4   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Foul Sewer              | Micro    |
| Date 21/02/2022 11:09                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamatje |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name                                           | F.A32 | F.A31                      | F.A30          |       |
|---------------------------------------------------|-------|----------------------------|----------------|-------|
| MH Name                                           | F.A32 | F.A31                      | F.A30          |       |
| Hor Scale 500<br>Ver Scale 100<br>Datum (m)-2.000 |       |                            |                |       |
| PN                                                |       | F1.014                     | F1.013         |       |
| Dia (mm)                                          |       | 255                        | 255            |       |
| Slope (1:X)                                       |       | 30.5                       | 100.1          |       |
|                                                   | 3.500 |                            |                |       |
| Cover Level (m)                                   | m     |                            |                |       |
| Cover Level (m) Invert Level (m)                  |       | 4<br>1<br>1<br>1<br>2<br>2 | 4.115<br>4.570 | 4.570 |



| J.B. Barry & Partners Ltd                                              |                         | Page 5    |
|------------------------------------------------------------------------|-------------------------|-----------|
| Classon House                                                          | 20217 - Bessborough SHD |           |
| Dundrum Business Park                                                  | (The Farm)              |           |
| Dublin 14                                                              | Foul Sewer              | - Micro   |
| Date 21/02/2022 11:09                                                  | Designed by DOB         | Drainage  |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Dialitage |
| Innovyze                                                               | Network 2020.1          |           |

| MH Name            | F.A33         | F.A32  | 2 |
|--------------------|---------------|--------|---|
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        | - |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
| Hor Scale 500      |               |        |   |
|                    |               |        |   |
| Ver Scale 100      |               |        |   |
|                    |               |        |   |
|                    |               |        |   |
| Datum (m)-6.000    |               |        |   |
| PN                 |               | F1.015 |   |
| Dia (mm)           |               | 255    |   |
| Slope (1:X)        |               | 40.2   |   |
| Cover Level (m)    | 8000<br>3 800 | 3.500  |   |
|                    | m<br>m        | m      |   |
|                    |               |        |   |
| Invert Level (m)   |               | 1.596  |   |
| TUACTO DEACT (III) |               | 7·2    |   |
|                    |               |        |   |
| Length (m)         |               | 19.092 |   |

| J.B. Barry & Partners Ltd                                              |                         | Page 6   |  |
|------------------------------------------------------------------------|-------------------------|----------|--|
| Classon House                                                          | 20217 - Bessborough SHD |          |  |
| Dundrum Business Park                                                  | (The Farm)              |          |  |
| Dublin 14                                                              | Foul Sewer              | Micro    |  |
| Date 21/02/2022 11:09                                                  | Designed by DOB         |          |  |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Drainage |  |
| Innovyze                                                               | Network 2020.1          |          |  |

| MH Name          | F.B3   | F.B2                                    | 2 |
|------------------|--------|-----------------------------------------|---|
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        | 000                                     | - |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
|                  |        |                                         |   |
| or Scale 500     |        |                                         |   |
|                  |        |                                         |   |
| Ver Scale 100    |        |                                         |   |
|                  |        |                                         |   |
| Datum (m)6.000   |        |                                         |   |
| PN               |        | F2.000                                  |   |
| Dia (mm)         |        | 225                                     |   |
| Slope (1:X)      |        | 60.0                                    |   |
|                  | 15.400 | 15.600                                  |   |
| Cover Level (m)  | 4.     | . 0                                     |   |
|                  |        |                                         |   |
|                  |        | 000000000000000000000000000000000000000 |   |
| Invert Level (m) |        | 13.3800<br>13.800                       |   |
|                  |        |                                         |   |
| Length (m)       |        | 25.192                                  |   |

| J.B. Barry & Partners Ltd |                                                           |
|---------------------------|-----------------------------------------------------------|
| 20217 - Bessborough SHD   |                                                           |
| (The Farm)                |                                                           |
| Foul Sewer                | Micro                                                     |
| Designed by DOB           |                                                           |
| Checked by                | Drainage                                                  |
| Network 2020.1            | ,<br>,                                                    |
|                           | (The Farm)<br>Foul Sewer<br>Designed by DOB<br>Checked by |

| 1H Name          | F.B                                            | 6 F.B5                                  |     |
|------------------|------------------------------------------------|-----------------------------------------|-----|
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                | 1.002                                   | - 1 |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
| Nor Scale 500    |                                                |                                         |     |
|                  |                                                |                                         |     |
| Ver Scale 100    |                                                |                                         |     |
|                  |                                                |                                         |     |
|                  |                                                |                                         |     |
| Datum (m) 5.000  |                                                |                                         |     |
| PN               |                                                | F3.000                                  |     |
| Dia (mm)         |                                                | 255                                     |     |
| Slope (1:X)      |                                                | 60.0                                    |     |
| Cover Level (m)  | ۲<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د | 00                                      |     |
| YOVET TEAGT (W)  | ۲<br>۲                                         | 14.500                                  |     |
|                  |                                                | ц,                                      |     |
|                  |                                                | 6 0                                     |     |
|                  |                                                | m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |     |
| Invert Level (m) |                                                |                                         |     |
| invert Level (m) |                                                | 12.189                                  |     |

| J.B. Barry & Partners Ltd                                              |                         | Page 8   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Foul Sewer              | Micro    |
| Date 21/02/2022 11:09                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye  |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name                                                                           | F.B13 F.B12 F.B11 F.B10                                                             |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| MH Name                                                                           | F.B13 F.B12 F.B11 F.B10                                                             |
| Hor Scale 500<br>Ver Scale 100<br>Datum (m)4.000<br>PN<br>Dia (mm)<br>Slope (1:X) | F4.002     F4.001     F4.000       225     225     225       20.5     50.0     60.0 |
| Cover Level (m)                                                                   | 12.400<br>13.200<br>13.400                                                          |
| Invert Level (m)                                                                  | 10.975<br>11.437<br>11.680<br>11.680<br>11.970                                      |
| Length (m)                                                                        | 9.495 12.128 17.403                                                                 |

# Appendix 6

#### PRIORITY GEOTECHNICAL LTD - GROUND INVESTIAGTION





Our Ref: JMS/Rp/P21239 + attachments (\*.pdf)

16<sup>th</sup> March, 2022

JB Barry & Partners Limited 3 Eastgate Road, Eastgate Business Park, Little Island, Co. Cork,

T45 KH74.

#### Re: Bessborough SHD Sites, Site Investigation, Factual report.

#### Introduction

In November 2021, Priority Geotechnical (PGL) were requested by JB Barry & Partners Limited acting on behalf of their client Estuary View Enterprises to undertake a site investigation as part of the Bessborough SHD Sites project.



#### Objectives

The objective of the site investigation contract is to determine the ground and groundwater conditions in order to inform the engineering design solutions for the proposed development.

#### Scope

The original scope of the site investigation, which was specified by JB Barry & Partners, comprised of:

- 06Nr. Cable percussion boreholes;
- Trial pits;
- Surveying of 'as-built' levels and co-ordinates;
- All associated sampling;
- All associated laboratory works;
- Associated reporting;

The final site works as completed is outlined, herein. This geotechnical data report presents the fieldworks records with regard to the site investigation for the Bessborough SHD Sites Project. The report should be read in conjunction with the exploratory records, the photographic records and the laboratory test data accompanying this report.

#### Site Works

This investigation was carried out in accordance with Eurocode 7- Geotechnical Design Part 2, ground investigation and testing (BS EN 1997-2: 2007) and the relevant British Standards (BS 5930 (2015) Code of Practice for Site Investigation and BS 1377, Method of Tests for Soil for Civil Engineering Purposes, *in situ* Tests Parts 1 to 9).

The direct intrusive fieldworks were undertaken from the 10<sup>th</sup> and 17<sup>th</sup> January, 2022 to under the supervision of PGL, Engineering Geologist(s). Details of the plant and equipment used are detailed on the relevant exploratory records, accompanying this report.

#### **Cable Percussion Boreholes**

Six (06) cable percussion boreholes were drilled to depths 4.4m below existing ground level (bgl) to 9.1m bgl using PGL's Dando 2000 Rig and 200mm diameter casing. The logs are accompanying this factual report.

| Location | Depth<br>(m bgl) | Date<br>(dd/mm/yyyy) |
|----------|------------------|----------------------|
| BH01     | 4.4              | 13/01/2022           |
| BH02     | 9.1              | 10/01/2022           |
| BH03     | 8.4              | 12/01/2022           |
| BH04     | 7.3              | 14/01/2022           |
| BH05     | 7.4              | 17/01/2022           |
| BH06     | 7.0              | 13/01/2022           |

| Chiselling   |                      |                       |                     |         |  |
|--------------|----------------------|-----------------------|---------------------|---------|--|
| Location     | Depth Top<br>(m bgl) | Depth Base<br>(m bgl) | Duration<br>(hh:mm) | Tool    |  |
| BH01         | 1.20                 | 1.30                  | 01:00               | Chisel. |  |
| БПОТ         | 4.30                 | 4.40                  | 01:00               | Chisel. |  |
| BH02         | 2.75                 | 2.90                  | 01:00               | Chisel. |  |
| DEUZ         | 8.90                 | 9.10                  | 01:00               | Chisel. |  |
| <b>B</b> U00 | 4.90                 | 5.00                  | 01:00               | Chisel. |  |
| BH03         | 8.30                 | 8.40                  | 01:00               | Chisel. |  |
| BH04         | 3.80                 | 4.00                  | 01:00               | Chisel. |  |
| <b>БП</b> 04 | 7.20                 | 7.30                  | 01:00               | Chisel. |  |
| BLIGE        | 6.70                 | 6.90                  | 01:00               | Chisel. |  |
| BH05         | 7.30                 | 7.40                  | 01:00               | Chisel. |  |
| BH06         | 5.75                 | 5.95                  | 01:00               | Chisel. |  |
|              | 6.90                 | 7.00                  | 01:00               | Chisel. |  |

#### **Trial Pits**

Seven (07) trial pits were excavated to depths 0.3m bgl to 4.6m bgl using a 14t tracked excavator. The exploratory logs and photographic records accompany this factual report.

| Location | Depth<br>(m bgl) | Date<br>(dd/mm/yyyy) |
|----------|------------------|----------------------|
| TP01     | 3.9              | 11/01/2022           |
| TP02     | 3.2              | 10/01/2022           |
| TP03     | 4.5              | 11/01/2022           |
| TP04     | 4.5              | 13/01/2022           |
| TP05     | 4.5              | 14/01/2022           |
| TP06     | 0.3              | 12/01/2022           |
| TP06A    | 4.6              | 12/01/2022           |

#### Sampling

A total of sixty two (62) bulk disturbed samples (B) and twenty two (22) small disturbed samples (D) were recovered from the exploratory holes in accordance with Geotechnical Investigation and Sampling – Sampling Methods and Groundwater Measurements (EN ISO 22475-1:2006).

#### In-Situ Testing

#### Standard Penetration Tests (SPT)

A total of thirty nine (39) standard penetration tests, were carried out in the cable percussion boreholes using the 60° solid cone (CPT) in place of the standard split barrel sampler. The data was presented on the relevant logs accompanying this factual report.

#### Falling Head Tests

Two (02) *in situ* falling head permeability tests were carried out in boreholes; in accordance with BS5930: 1999, Section 4: Cl. 25.4, within the superficial deposits over duration of one (1) hour. The processed test data was presented on the relevant borehole log presented accompanying this factual report. The shape or intake factor, f was derived from the condition at the base of the borehole at the test depth and test geometry as per Hvorslev (1951).

$$k = \frac{A}{fd} \frac{\log_{e} (H_{0}/H_{1})}{t}$$

Generally for all tests the specific depth range of the test was the deposits below the depth of casing. A mean k measured ( $k_H = k_V$ ), permeability in the soil was assumed equal in both horizontal and vertical direction, ( $k_H/k_V = 1$ .). The test geometry provided a shape factor, f for the test undertaken in the standpipe well.

#### **Dynamic Probing**

PGL's Competitor dynamic probing rig was used to undertake dynamic probing (DP(H); 50kg drop weight, 500mm drop height) in general accordance with Geotechnical Investigation and Testing, Part 2, Dynamic probing, BS EN ISO 22476-2:2005. The blows per 100mm (N<sub>100 H</sub>) were recorded to refusal being 25blows without progress over 100mm. Six (06) number dynamic probes progressed to refusal at depths 2.7m bgl to 8.8m bgl. The exploratory logs accompany this factual report.

| Location | Refusal<br>depth, m bgl |
|----------|-------------------------|
| DP01     | 3.7                     |
| DP02     | 8.8                     |
| DP03     | 2.7                     |
| DP04     | 5.0                     |
| DP05     | 3.0                     |
| DP06     | 3.5                     |

#### Survey and Drawings

The 'as built' exploration locations were surveyed to the Ordinance Survey Irish Transverse Mercator system of co-ordinates (ITM) and elevations to Malin Head datum and shown on the relevant exploratory logs and the Exploratory Location Plans (P21239-SI-A, P21239-SI-01) accompanying this report.

| Location | Easting   | Northing | Ground Level<br>(mOD) | Final Depth<br>(m bgl) | Date Start<br>(dd/mm/yyyy) |
|----------|-----------|----------|-----------------------|------------------------|----------------------------|
| BH01     | 171820.78 | 70468.88 | 16.64                 | 4.40                   | 13/01/2022                 |
| BH02     | 171741.94 | 70395.18 | 13.07                 | 9.10                   | 10/01/2022                 |
| BH03     | 171738.42 | 70311.70 | 11.49                 | 8.40                   | 12/01/2022                 |
| BH04     | 172026.44 | 70364.45 | 12.50                 | 7.30                   | 14/01/2022                 |
| BH05     | 172034.00 | 70300.87 | 12.21                 | 7.40                   | 17/01/2022                 |
| BH06     | 171946.00 | 70338.05 | 13.57                 | 7.00                   | 13/01/2022                 |
| DP01     | 171821.58 | 70465.48 | 16.54                 | 3.70                   | 13/01/2022                 |
| DP02     | 171742.31 | 70392.88 | 12.93                 | 8.80                   | 13/01/2022                 |
| DP03     | 171735.89 | 70311.95 | 11.53                 | 2.70                   | 13/01/2022                 |
| DP04     | 172027.93 | 70363.86 | 12.40                 | 5.00                   | 13/01/2022                 |
| DP05     | 172033.97 | 70304.80 | 12.21                 | 3.00                   | 14/01/2022                 |
| DP06     | 171944.50 | 70343.17 | 13.61                 | 3.50                   | 13/01/2022                 |
| TP01     | 171822.48 | 70466.73 | 16.60                 | 3.90                   | 11/01/2022                 |
| TP02     | 171742.96 | 70394.13 | 13.04                 | 3.20                   | 10/01/2022                 |
| TP03     | 171736.67 | 70314.17 | 11.80                 | 4.50                   | 11/01/2022                 |
| TP04     | 172026.89 | 70362.36 | 12.35                 | 4.50                   | 13/01/2022                 |
| TP05     | 172033.99 | 70303.02 | 12.21                 | 4.50                   | 14/01/2022                 |
| TP06     | 171940.73 | 70337.93 | 13.69                 | 0.30                   | 12/01/2022                 |
| TP06A    | 171944.88 | 70339.22 | 13.61                 | 4.60                   | 12/01/2022                 |

#### Laboratory Testing

Laboratory testing was ongoing at the time of reporting.

#### **Published Geology**

A search of the Geological Survey data base and 1:100,000 mapping (Sheet 25) identified two (02) major lithological units defining the area. The majority of the site is underlain by Waulsortian Limestones (WA) described as massive unbedded Lime-Mudstones. The Little Island Formation (LI) is mapped to the north and defined by massive and crinoidal fine Limestone.

Teagasc subsoil mapping indicates that the area is underlain by Made Ground deposits. The National Groundwater Vulnerability mapping indicates the area mostly has a rating of high vulnerability.

#### **Ground and Groundwater Conditions**

The full details of the ground conditions encountered are provided for on the exploratory records accompanying this report. The records provide descriptions, in accordance with BS 5930 (2015) and Eurocode 7, Geotechnical Investigation and Testing, Identification and classification of soils, Part 1, Identification and description (EN ISO 14688-1: 2002),– Identification and Classification of Soil, Part 2: Classification Principles (EN ISO 14688-2:2004) and Identification and Classification of Rock, Part 1: Identification & Description (EN ISO 14689-1:2004) of the materials encountered, *in situ* testing and details of the samples taken, together with any observations made during the ground investigation.

Groundwater levels may be subject to diurnal, seasonal and climatic variations and can also be affected by drainage conditions, tidal variations etc. Low volume groundwater flow may be cut-off by borehole casing as it progresses in stiff glacial deposits. The duration trial pit excavations remain open may not be sufficient to allow for low volume flow to present. The groundwater regime should be assessed from standpipe well installations.

Groundwater was encountered at depths 3.10m bgl to 3.90m bgl during the period of fieldworks within the extent of the borehole and pit excavations, summarised below. The exploratory locations were backfilled with grout, gravel and arisings.

| Location | Depth Strike<br>(m bgl) | Remarks              | Standpipe<br>(Y/N) |
|----------|-------------------------|----------------------|--------------------|
| BH01     | -                       | None encountered.    | N                  |
| BH02     | -                       | None encountered.    | Y                  |
| BH03     | -                       | None encountered.    | Ν                  |
| BH04     | -                       | None encountered.    | Ν                  |
| BH05     | -                       | None encountered.    | Ν                  |
| BH06     | -                       | None encountered.    | Y                  |
| TP01     | -                       | None encountered.    | Ν                  |
| TP02     | -                       | None encountered.    | Ν                  |
| TP03     | -                       | None encountered.    | Ν                  |
| TP04     | 3.9                     | Trickle rate of flow | Ν                  |
| TP05     | 3.9                     | Slow rate of flow    | Ν                  |
| TP06     | -                       | None encountered.    | Ν                  |
| TP06A    | 3.1                     | Trickle rate of flow | Ν                  |

#### SUMMARY OF GROUNDWATER

Two (02) number 50mm dia. HDPE standpipe wells were constructed to allow for groundwater monitoring. The construction details are summarised below.

| Location | Depth Top<br>(m bgl) | Depth Base<br>(bgl) | Diameter<br>(mm) | Pipe<br>Type | Pipe<br>Details |
|----------|----------------------|---------------------|------------------|--------------|-----------------|
| BH02     | 0.00                 | 2.00                | 50               | PLAIN        | Plain.          |
| DEUZ     | 2.00                 | 8.50                | 50               | SLOTTED      | Slotted.        |
| BH06     | 0.00                 | 3.50                | 50               | PLAIN        | Plain.          |
| БПОО     | 3.50                 | 7.00                | 50               | SLOTTED      | Slotted.        |

#### SUMMARY OF STANDPIPE CONSTRUCTION

Exploratory locations were backfilled with their arisings or gravel and bentonite for locations with monitoring wells. Backfill details are displayed graphically on the accompanying logs and summarised below.

#### SUMMARY OF STANDPIPE DIPS

| Location | 08/02/2022    |
|----------|---------------|
| Location | Depth (m bgl) |
| BH02     | Dry           |
| BH06     | 4.4           |

#### SUMMARY OF BACKFILL

GRAVEL Backfill to installation/borehole

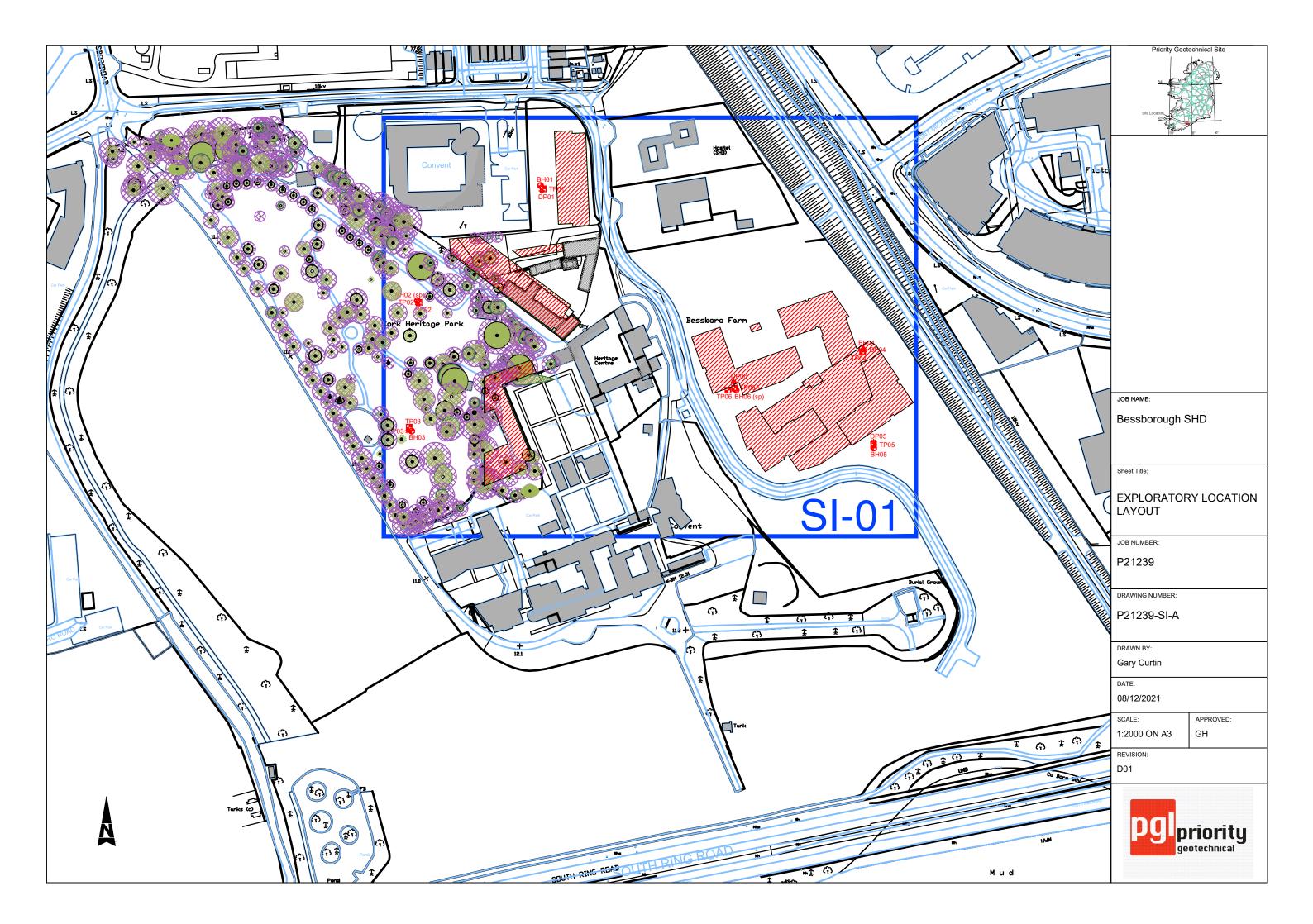


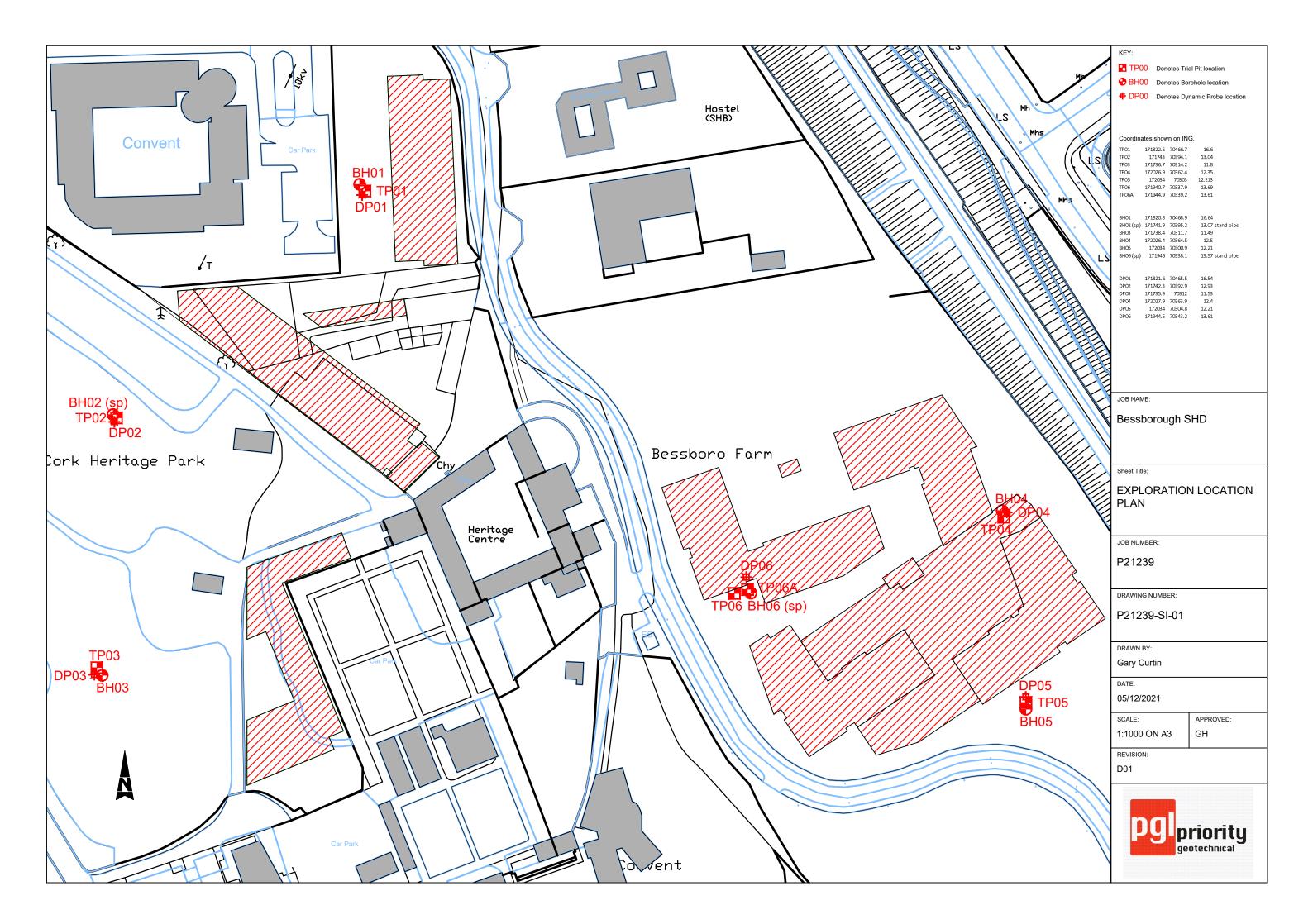
uPVC slotted pipe

BENTONITE Backfill to installation

Should you have any queries in relation to the data collected and presented herein, please do not hesitate to contact our office.

Yours sincerely, For **Priority Geotechnical**,


Rence


James McSweeney BSc Engineering Geologist

No responsibility can be held by PGL for ground conditions between exploratory locations. The exploratory logs provide for ground profiles and configuration of strata relevant to the investigation depths achieved during the fieldworks. Caution shall be taken when extrapolating between such exploratory locations. No liability is accepted for ground conditions extraneous to the exploratory locations.

No account has been taken of potential subsidence or ground movement due to mineral extraction, mining works or karstification below or in proximity to the site, unless specifically addressed.

This report has been prepared for Employer and their Representative as outline, herein. The information should not be used without their prior written permission. PGL accepts no responsibility or liability for this document being used other than for the purposes for which it was intended.





### KEY TO SYMBOLS ON EXPLORATORY HOLE RECORDS

All linear dimensions are in metres or millimetres

#### DESCRIPTIONS

| **                  | Drillers Description                                                                    |
|---------------------|-----------------------------------------------------------------------------------------|
| Friable             | Easily crumbled                                                                         |
|                     |                                                                                         |
| SAMPLES             |                                                                                         |
| U( )                | Undisturbed 102mm diameter sample, ( ) denotes number of blows to drive sampler         |
| U( )F, U( )P        | F- not recovered, P-partially recovered                                                 |
| U38                 | Undisturbed 38mm diameter sample                                                        |
| P(F), (P)           | Piston sample - disturbed                                                               |
| В                   | Bulk sample - disturbed                                                                 |
| D                   | Jar Sample - disturbed                                                                  |
| W                   | Water Sample                                                                            |
| CBR                 | California Bearing Ratio mould sample                                                   |
| ES                  | Chemical Sample for Contamination Analysis                                              |
| SPTLS               | Standard Penetration Test S lump sample from split sampler                              |
| CORE RECOVERY ANI   | D ROCK QUALITY                                                                          |
| TCR                 | Total Core Recovery (% of Core Run)                                                     |
| SCR                 | Solid Core Recovery (length of core having at least one full diameter as % of core run) |
| RQD                 | Rock Quality Designation (length of solid core greater than 100mm as % of core run)     |
|                     | icient space for the TCR, SCR and RQD, the results may be found in the remarks column   |
| lf                  | Fracture Spacing in mm (Minimum/Average/Maximum) NI - non intact, NR - no recovery      |
| AZCL                | Assumed Zone of Core Loss                                                               |
| NI                  | Non intact                                                                              |
| GROUNDWATER         |                                                                                         |
|                     | Groundwater strike                                                                      |
| Ť                   |                                                                                         |
|                     | Groundwater level after standing period                                                 |
| Date/Water          | Date of shift (day/month)/Depth to water at end of previous shift shown above the date  |
|                     | and depth to water at beginning of shift given below the date                           |
| INSITU TESTING      |                                                                                         |
| S                   | Standard Penetration Test - split barrel sampler                                        |
| C                   | Standard Penetration Test - solid 60° cone                                              |
| SW                  | Self Weight Penetration                                                                 |
| lvp, HVp (R)        | In Situ Vane Test, Hand Vane Test (R) demonstrates remoulded strength                   |
| K(F), (C), (R), (P) | Permeability Test                                                                       |
| HP                  | Hand Penetrometer Test                                                                  |
|                     |                                                                                         |
| MEASURED PROPER     | ries                                                                                    |
| Ν                   | Standard Penetration Test - blows required to drive 300mm after seating drive           |
| x/y                 | Denotes x blows for y mm within the Standard Penetration Test                           |
| x*/y                | Denotes x blows for y mm within the seating drive                                       |
|                     | <b>`</b>                                                                                |

#### c<sub>u</sub> Undrained Shear Strength (kN/m<sup>2</sup>)

### CBR California Bearing Ratio

#### ROTARY DRILLING SIZES

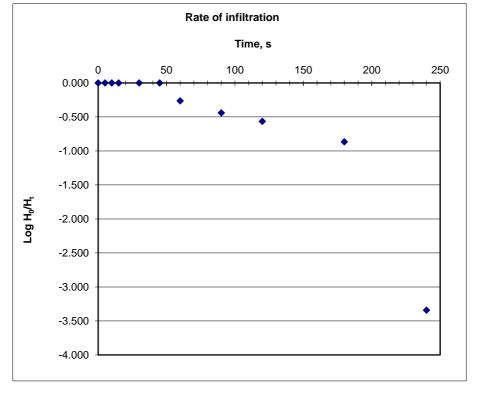
| Index Letter | Nominal Diameter (mm) |      |  |  |  |
|--------------|-----------------------|------|--|--|--|
|              | Borehole              | Core |  |  |  |
| Ν            | 75                    | 54   |  |  |  |
| н            | 99                    | 76   |  |  |  |
| Р            | 120                   | 92   |  |  |  |
| S            | 146                   | 113  |  |  |  |



**Key Sheet** 

| pg                     | <b>prio</b>     | ity<br><sub>ical</sub>                                                                                                                                                   |                                                               | T<br>Fa                                                                                                                     | el: 021 4<br>ax: 021 4  |                         |                              |                                                                                                                                                                                                                                                                                                                                  | Drilled By<br>PC<br>Logged By<br>CS                                                                                                                                                                                                                                                                | Borehole N<br>BH01<br>Sheet 1 of                                                                                                                                                                        |                           |
|------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Proje                  | ct Name         | : Bessbor                                                                                                                                                                | ro SHD                                                        |                                                                                                                             | <b>oject No</b><br>1239 |                         | Co-ords                      | : 171821E - 704                                                                                                                                                                                                                                                                                                                  | 69N                                                                                                                                                                                                                                                                                                | Hole Type<br>CP                                                                                                                                                                                         |                           |
| Locat                  | tion:           | Mahon,                                                                                                                                                                   | Cork                                                          | •                                                                                                                           |                         |                         | Level:                       | 16.64 m                                                                                                                                                                                                                                                                                                                          | OD                                                                                                                                                                                                                                                                                                 | <b>Scale</b><br>1:50                                                                                                                                                                                    |                           |
| Client                 | t:              | Estuary                                                                                                                                                                  | View Eı                                                       | nt. Ltd                                                                                                                     |                         |                         | Date:                        | 13/01/2022                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                  | 14/01/2022                                                                                                                                                                                              |                           |
| Well<br>Backfill       | Water<br>Strike | -                                                                                                                                                                        |                                                               | n Situ Testing                                                                                                              | Depth<br>(m bg          |                         | Legend                       | l Stra                                                                                                                                                                                                                                                                                                                           | atum Descriptio                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                       |                           |
|                        | (m bgl)         | Depth (m bgl)           0.00 - 1.00           1.00 - 2.00           1.00           2.00 - 3.00           2.00 - 3.00           3.00 - 4.00           3.00           4.00 | Type<br>B<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>SPT<br>(C) | Results         65 (5,10/65 for 150mm)         N=15 (3,3/4,4,3,4)         N=15 (3,3/4,4,3,4)         90 (9,10/90 for 225mm) | 1.00<br>3.00<br>4.40    | 15.64                   |                              | Brown red, slightly<br>is fine to coarse. Gi<br>to sub-rounded. Dri<br>limestone boulders         Firm, brown red, sli<br>with low cobble cor<br>is fine to coarse, su<br>are sub-angular, lim<br>1.20m - 1.30m: Dri<br>SPT blow counts low<br>Gravel is fine to coar<br>Cobbles are sub-ro<br>63-120mm. Driller of<br>boulders. | avel is fine to coars<br>ller describes: Fill o<br>ghtly sandy slightly<br>tent. Sand is fine to<br>b-angular to sub-ro<br><u>nestone</u> with dia 63<br><i>iller noted: Bouldo</i><br><i>coally.</i><br>ghtly sandy slightly<br>ntent. Sand is fine<br>arse, sub-angular to<br>unded, limestone w | se, sub-angular<br>clay with<br>gravelly CLAY<br>o coarse. Gravel<br>ounded. Cobbles<br>-80mm.<br><i>ers. Increased</i><br>gravelly CLAY<br>to coarse.<br>o sub-rounded.<br>vith dia<br>welly clay with |                           |
|                        | ndwater         |                                                                                                                                                                          | <u> </u>                                                      |                                                                                                                             |                         | ole Informa             |                              |                                                                                                                                                                                                                                                                                                                                  | Chiselling Deta<br>Top (m) Base (m<br>1.20 1.30                                                                                                                                                                                                                                                    | i) Duration (hh:mm)                                                                                                                                                                                     | Tool<br>Chisel.           |
| Struck<br>bgl)         |                 | e to (m After<br>gl) (mins)                                                                                                                                              | Sealed<br>bgl                                                 |                                                                                                                             | ered.                   | 2 depth (m bgl)<br>4.40 | Hole Dia (<br>200<br>Dando 2 | 200                                                                                                                                                                                                                                                                                                                              | 4.30 4.40                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                         | Chisel.                   |
| <b>Rema</b><br>Cable p |                 | n borehole termii                                                                                                                                                        | nated at -                                                    | 4.40m bgl.                                                                                                                  | <b>_</b> _              | anhuaur                 |                              | <b>ift Data:</b> <sup>GW (m bgl)</sup> 13<br>Dry 13<br>Dry 14                                                                                                                                                                                                                                                                    | /01/2022 08:00<br>/01/2022 18:00<br>/01/2022 08:00                                                                                                                                                                                                                                                 | th (m bgl) <b>Remar</b><br>0.00 Start of s<br>2.00 End of s<br>2.00 Start of s<br>4.40 End of bore                                                                                                      | shift.<br>hift.<br>shift. |

| pg                      | <b>prio</b>     | rity                                                                                              |                                                     | www.                                                                    | Tel: 021 4<br>Fax: 021 4<br>priorityge | 4638690<br>eotechnical. |                                |                                                                                                                                                                             | Drilled By<br>PC<br>Logged By<br>CS                                                                         | Borehole N<br>BH02<br>Sheet 1 of                                                             | 1                          |
|-------------------------|-----------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------|-------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|
| Projec                  | ct Name         | e: Bessbo                                                                                         | ro SHD                                              |                                                                         | Project No<br>P21239                   |                         | Co-ords:                       | 171742E - 703                                                                                                                                                               | 395N                                                                                                        | Hole Type<br>CP                                                                              | •                          |
| Locat                   | ion:            | Mahon,                                                                                            | Cork                                                |                                                                         |                                        |                         | Level:                         | 13.07 m                                                                                                                                                                     | OD                                                                                                          | <b>Scale</b><br>1:50                                                                         |                            |
| Client                  | :               | Estuary                                                                                           | View E                                              | int. Ltd                                                                |                                        |                         | Date:                          | 10/01/2022                                                                                                                                                                  | -                                                                                                           | 11/01/2022                                                                                   |                            |
| Well<br>Backfill        | Water<br>Strike | •                                                                                                 |                                                     | n Situ Testing                                                          | Depti<br>(m bg                         |                         | Legend                         | Stra                                                                                                                                                                        | atum Description                                                                                            |                                                                                              |                            |
|                         | (m bgl)         | Depth (m bgl)<br>0.00 - 1.00<br>1.00 - 2.00<br>1.00<br>2.00 - 3.00<br>2.00<br>3.00 - 4.00<br>3.00 | B<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT | Results<br>N=6 (1,1/1,1,2,2)<br>N=7 (1,1/1,2,2,2)<br>N=12 (3,3/2,3,3,4) | 1.00                                   | 12.07                   |                                | is fine to coarse. Gr<br>to sub-rounded. Dri<br>Soft, brown red, slig<br>Sand is fine to coar<br>angular to sub-roun<br>clay.<br>2.00m - 3.00m: Dri<br>Firm to stiff, brown | red, slightly sandy sl                                                                                      | ə, sub-angular<br>əl clay.<br>rravelly CLAY.<br>coarse, sub-<br>es: Gravelly<br><i>rs</i> .  |                            |
|                         |                 | 4.00 - 5.00<br>4.00                                                                               | B<br>SPT<br>(C)                                     | N=12 (3,3/2,3,3,4)<br>N=21 (4,4/5,5,6,5)                                |                                        |                         |                                | silty CLAY with low<br>coarse. Gravel is fir                                                                                                                                | cobble content. San<br>ne to coarse, sub-an<br>are sub-rounded, Lin                                         | d is fine to<br>gular to sub-                                                                | 4                          |
|                         |                 | 5.00 - 6.00<br>5.00<br>6.00 - 7.00<br>6.00                                                        | B<br>SPT<br>(C)<br>B<br>SPT<br>(C)                  | N=24 (5,6/5,6,7,6)<br>N=29 (6,6/7,7,8,7)                                | 5.00                                   | 8.07                    |                                | with medium cobble<br>Gravel is fine to coa                                                                                                                                 | ghtly sandy slightly g<br>e content. Sand is fir<br>arse, sub-angular to<br>unded, limestone wi<br>pulders. | ne to coarse.<br>sub-rounded.                                                                | 6 -                        |
|                         |                 | 7.00 - 8.00<br>7.00<br>8.00                                                                       | B<br>SPT<br>(C)<br>SPT<br>(C)                       | N=33 (7,7/8,8,9,8)<br>N=32 (7,8/9,5,9,9)                                |                                        |                         |                                |                                                                                                                                                                             |                                                                                                             |                                                                                              | 7                          |
|                         | duote           |                                                                                                   |                                                     |                                                                         | 9.10                                   | 3.97                    |                                | End                                                                                                                                                                         | of Borehole at 9.100n<br>Chiselling Detai                                                                   | ls:                                                                                          | 9 —                        |
| Struck (<br>bgl)        |                 | :<br>e to (m After<br>ggl) (mins)                                                                 |                                                     | ed (m Comme<br>jl) None encour                                          | nt <sup>C</sup><br>ntered.             | Depth (m bgl)<br>9.10   | Hole Dia (m<br>200<br>Dando 20 | 200                                                                                                                                                                         | <b>1)</b> 2.75 2.90<br>8.90 9.10                                                                            | 01:00                                                                                        | Tool<br>Chisel.<br>Chisel. |
| <b>Remar</b><br>Cable p |                 | n borehole termi                                                                                  | nated at                                            | 9.10m bgl.                                                              |                                        |                         | Shif                           | 10.<br>11.                                                                                                                                                                  | /01/2022 08:00 0<br>/01/2022 18:00 0<br>/01/2022 08:00 0                                                    | a (m bgl) <b>Remar</b><br>.00 Start of s<br>.00 End of s<br>.00 Start of s<br>.10 End of bor | shift.<br>hift.<br>shift.  |


| pg                         | priol<br>geotechr          | rity                                                                                                                                                                         |                                                                  | www.                                                                                                                           | Tel: 021 46<br>Fax: 021 46<br>prioritygec |                                 |                                          |                                                                                                                                                                                         | Drilled By<br>PC<br>Logged By<br>CS                                                                                                                                                            | Borehole N<br>BH03<br>Sheet 1 of                                                                           | <b>)</b><br>F 1                 |
|----------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|
| Project Name: Bessboro SHD |                            |                                                                                                                                                                              | <b>roject No.</b><br>21239                                       |                                                                                                                                | Co-ords:                                  | 171738E - 703                   | 12N                                      | Hole Typ<br>CP                                                                                                                                                                          | е                                                                                                                                                                                              |                                                                                                            |                                 |
| Locat                      | ion:                       | Mahon,                                                                                                                                                                       | Cork                                                             |                                                                                                                                |                                           |                                 | Level:                                   | 11.49 m (                                                                                                                                                                               | OD                                                                                                                                                                                             | <b>Scale</b><br>1:50                                                                                       |                                 |
| Client                     | :                          | Estuary                                                                                                                                                                      | View E                                                           | nt. Ltd                                                                                                                        |                                           |                                 | Date:                                    | 12/01/2022                                                                                                                                                                              | -                                                                                                                                                                                              | 12/01/2022                                                                                                 |                                 |
| Well<br>Backfill           | Water<br>Strike<br>(m bgl) | Sample<br>Depth (m bgl)                                                                                                                                                      | e and li<br>Type                                                 | n Situ Testing<br>Results                                                                                                      | Depth<br>(m bgl)                          | Level<br>(mOD)                  | Legend                                   | Stra                                                                                                                                                                                    | tum Description                                                                                                                                                                                | 1                                                                                                          |                                 |
|                            |                            | 0.00 - 1.00<br>1.00 - 2.00<br>1.00<br>2.00 - 3.00<br>2.00<br>3.00 - 4.00<br>3.00<br>4.00 - 5.00<br>4.00<br>5.00 - 6.00<br>5.00<br>6.00 - 7.00<br>6.00<br>7.00 - 8.00<br>7.00 | B<br>BSPC<br>BSPC<br>BSPC<br>BSPC<br>BSPC<br>BSPC<br>BSPC<br>BSP | N=7 (1,1/1,2,2,2)<br>N=7 (1,1/2,2,1,2)<br>N=10 (2,3/3,2,3,2)<br>N=20 (3,4/4,5,5,6)<br>N=26 (6,7/6,6,7,7)<br>N=28 (7,6/6,8,7,7) | 4.00<br>5.00<br>6.00                      | 7.49<br>6.49<br>5.49            | 아제·아제·아제·아제·아제·아제·아제·아제·아제·아제·아제·아제·아제·아 | Soft becoming firm,<br>gravelly CLAY.<br>Stiff, brown red, slig<br>Sand is fine to coars<br>Stiff, brown red, slig<br>with low cobble comi<br>sub-rounded, Limes<br>6.00m - 8.40m: Dril | htly sandy slightly g<br>se. Gravel is fine to<br>htly sandy slightly g<br>tent. Cobbles are st<br>tone with dia 63-80<br>htly sandy slightly g<br>tent. Cobbles are st<br>tone with dia 63-80 | ravelly CLAY.<br>coarse.<br>pravelly CLAY<br>ub-angular to<br>mm.<br>pravelly CLAY<br>ub-angular to<br>mm. | 1<br>2<br>3<br>4<br>5<br>6<br>7 |
|                            |                            | 8.00 - 8.40<br>8.00                                                                                                                                                          | B<br>SPT<br>(C)                                                  | N=34 (7,8/8,9,8,9)<br>40 (9,10/40 for<br>150mm)                                                                                | 8.40                                      | 3.09                            |                                          | End c                                                                                                                                                                                   | of Borehole at 8.400n                                                                                                                                                                          | n                                                                                                          | 8                               |
| Grour                      | dwater                     | :                                                                                                                                                                            |                                                                  |                                                                                                                                |                                           | ole Informa                     | tion <sup>.</sup>                        |                                                                                                                                                                                         | Chiselling Detai                                                                                                                                                                               | ils:                                                                                                       |                                 |
| Struck<br>bgl)             | m Rose                     | e to (m After<br>ogl) (mins)                                                                                                                                                 | Seale                                                            | d (m Commer<br>I) None encoun                                                                                                  | nt De<br>tered.                           | pth (m bgl)<br>8.40<br>uipment: | Hole Dia (m<br>200                       | 200                                                                                                                                                                                     | Top (m) Base (m)                                                                                                                                                                               | Duration (hh:mm)<br>01:00                                                                                  | Tool<br>Chisel<br>Chisel        |
| <b>Remar</b><br>Cable p    |                            | n borehole termi                                                                                                                                                             | nated at                                                         | 8.40m bgl.                                                                                                                     |                                           |                                 | Shit                                     |                                                                                                                                                                                         | 01/2022 08:00 0                                                                                                                                                                                | h (m bgl) <b>Remar</b><br>0.00 Start of s<br>3.40 End of bor                                               | shift.                          |

#### P21239 Falling head permeability test

| Location        | Bessborough SHD   |
|-----------------|-------------------|
| BH ID           | BH03              |
| Test            | 1                 |
| Casing diameter | <b>200</b> mm     |
| Casing depth    | <b>2.00</b> m     |
| Borehole depth  | <b>2.20</b> m     |
| GW Influence    | <b>2.20</b> m bgl |
| Date            | 12/01/2022        |

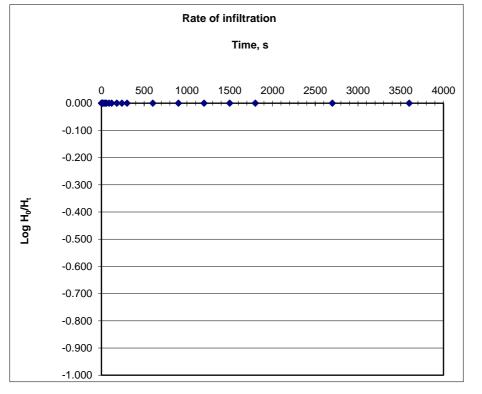
 $H_{w/}H_{o}$ 2.20

| Min   | Sec | depth, m bgl | vol, cu.m | Ht    | log H <sub>0</sub> /H <sub>t</sub> |                                   |                           |
|-------|-----|--------------|-----------|-------|------------------------------------|-----------------------------------|---------------------------|
| 0     | 0   | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 0.083 | 5   | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 0.17  | 10  | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 0.25  | 15  | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 0.5   | 30  | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 0.75  | 45  | 0.000        | 0.00000   | 2.200 | 0.000                              |                                   |                           |
| 1     | 60  | 1.000        | 0.03140   | 1.200 | -0.263                             |                                   |                           |
| 1.5   | 90  | 1.400        | 0.04396   | 0.800 | -0.439                             | <b>k</b> <sub>mean</sub>          | 1.12E-03 ms <sup>-1</sup> |
| 2     | 120 | 1.600        | 0.05024   | 0.600 | -0.564                             | $\mathbf{k}_{H} = \mathbf{k}_{V}$ |                           |
| 3     | 180 | 1.900        | 0.05966   | 0.300 | -0.865                             | 1                                 |                           |
| 4     | 240 | 2.199        | 0.06905   | 0.001 | -3.342                             | ]                                 |                           |



| pg                      | <b>prio</b>     | rity                                 |                 | ר<br>F<br>www.p                     | el: 021 46<br>ax: 021 46<br>rioritygeo |                                 |                                                                   |                                                                                                            | Drilled By<br>PC<br>Logged By<br>CS                                                                                  | Borehole N<br>BH04<br>Sheet 1 of                             | 1                        |
|-------------------------|-----------------|--------------------------------------|-----------------|-------------------------------------|----------------------------------------|---------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------|
| Proje                   | ct Name         | e: Bessbo                            | ro SHD          |                                     | <b>oject No.</b><br>1239               |                                 | Co-ords:                                                          | 172026E - 703                                                                                              | 864N                                                                                                                 | Hole Type<br>CP                                              | e                        |
| Locat                   | ion:            | Mahon,                               | Cork            |                                     |                                        |                                 | Level:                                                            | 12.50 m                                                                                                    | OD                                                                                                                   | <b>Scale</b><br>1:50                                         |                          |
| Client                  | :               | Estuary                              | View E          | int. Ltd                            |                                        |                                 | Date:                                                             | 14/01/2022                                                                                                 | -                                                                                                                    | 14/01/2022                                                   |                          |
| Well<br>Backfill        | Water<br>Strike | -                                    |                 | n Situ Testing                      | Depth<br>(m bgl)                       | Level<br>(mOD)                  | Legend                                                            | Stratum Description                                                                                        |                                                                                                                      |                                                              |                          |
|                         | (m bgl)         | Depth (m bgl)<br>1.00 - 2.00<br>1.00 | B<br>SPT<br>(C) | <b>Results</b><br>N=9 (1,1/2,2,3,2) | 1.00                                   | 11.50                           |                                                                   | plant material.                                                                                            | r sandy slightly grav<br>lightly sandy slightly<br>se. Gravel is fine to                                             | gravelly SILT.                                               | - 1                      |
|                         |                 | 2.00 - 3.00<br>2.00                  | B<br>SPT<br>(C) | N=9 (2,2/2,3,2,2)                   | 2.00                                   | 10.50                           |                                                                   | Firm, brown, slightly<br>low cobble content.<br>fine to coarse, sub-<br>are sub-angular to s<br>63-120mm.  | angular to sub-roun                                                                                                  | se. Gravel is<br>ded. Cobbles                                | - 2                      |
|                         |                 | 3.00 - 4.00<br>3.00                  | B<br>SPT<br>(C) | N=14 (2,3/3,4,3,4)                  | 3.00                                   | 9.50                            | 0.4.04.04.04<br>0.100105010<br>0.100105010<br>0.10010010000000000 | CLAY with low cobb<br>Gravel is fine to coa<br>Cobbles are sub-an                                          | slightly sandy slight<br>ble content. Sand is<br>arse, sub-angular to<br>gular to sub-rounde<br>Driller describes: b | fine to coarse.<br>sub-rounded.<br>ed, Limestone             | - 3                      |
|                         |                 | 4.00 - 5.00<br>4.00                  | B<br>SPT<br>(C) | N=22 (4,4/5,6,5,6)                  |                                        |                                 |                                                                   |                                                                                                            |                                                                                                                      |                                                              | 4                        |
|                         |                 | 5.00 - 6.00<br>5.00                  | B<br>SPT<br>(C) | N=29 (6,5/7,7,8,7)                  | 5.00                                   | 7.50                            |                                                                   |                                                                                                            | l boulder content. Sa<br>ne to coarse, sub-an<br>are sub-angular to su<br>63-70mm. Boulders                          | and is fine to<br>gular to sub-<br>ub-rounded.               | - 5                      |
|                         |                 | 6.00 - 7.00<br>6.00                  | B<br>SPT<br>(C) | N=37 (7,8/8,9,9,11)                 | 6.00                                   | 6.50                            |                                                                   | Stiff, brown, slightly<br>with low cobble con<br>is fine to coarse, su<br>are sub-angular to s<br>63-90mm. | tent. Sand is fine to<br>b-angular to sub-rou                                                                        | coarse. Gravel<br>unded. Cobbles                             | - 6                      |
|                         |                 | 7.00                                 | SPT<br>(C)      | 75 (10,15/75 for<br>150mm)          | 7.30                                   | 5.20                            | <u>, 0, -x, 0</u>                                                 | End o                                                                                                      | of Borehole at 7.300n                                                                                                | n                                                            | 8                        |
|                         |                 |                                      |                 |                                     |                                        |                                 |                                                                   |                                                                                                            |                                                                                                                      |                                                              | 9                        |
| Grour                   | ndwater         | :                                    |                 |                                     | Но                                     | le Informa                      | tion:                                                             |                                                                                                            | Chiselling Deta                                                                                                      |                                                              | Tacl                     |
| Struck<br>bgl)          | (m Ros          | e to (m After<br>ogl) (mins)         |                 | ad (m Comment<br>gl) None encounte  | Del                                    | pth (m bgl)<br>7.30<br>uipment: | Hole Dia (m<br>200<br>Dando 20                                    | 200                                                                                                        | 2 00 4 00                                                                                                            |                                                              | Tool<br>Chisel<br>Chisel |
| <b>Remai</b><br>Cable p |                 | n borehole term                      | inated at       | 7.30m bgl.                          | Eq                                     |                                 |                                                                   | <b>t Data:</b> <sup>GW (m bgl)</sup> 14                                                                    | /01/2022 08:00 0                                                                                                     | h (m bgl) <b>Remar</b><br>).00 Start of s<br>'.30 End of bor | shift.                   |

| pg                      | <b>prior</b><br>geotechn   | rity<br><sub>ical</sub>                                                                                                                |                                                                                                      | T<br>Fa<br>www.pi                                                                                                                        | ty Geotech<br>el: 021 463<br>ax: 021 463<br>rioritygeot | 31600<br>38690                  |                                         |                                                                                                                                                                                                                                                                                                                                                                 | Drilled By<br>PC<br>Logged By<br>CS                                                                                                                                                                           | Borehole N<br>BH05<br>Sheet 1 of                                                                                                                                  | 1                                         |
|-------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Proje                   | ct Name                    | e: Bessbor                                                                                                                             | o SHD                                                                                                |                                                                                                                                          | <b>oject No.</b><br>1239                                |                                 | Co-ords:                                | 172034E - 703                                                                                                                                                                                                                                                                                                                                                   | 01N                                                                                                                                                                                                           | Hole Type<br>CP                                                                                                                                                   | e                                         |
| Locat                   | ion:                       | Mahon,                                                                                                                                 | Cork                                                                                                 |                                                                                                                                          |                                                         |                                 | Level:                                  | 12.21 m                                                                                                                                                                                                                                                                                                                                                         | OD                                                                                                                                                                                                            | <b>Scale</b><br>1:50                                                                                                                                              |                                           |
| Client                  | :                          | Estuary                                                                                                                                | View E                                                                                               | Ent. Ltd                                                                                                                                 |                                                         |                                 | Date:                                   | 17/01/2022                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                             | 17/01/2022                                                                                                                                                        |                                           |
| Well<br>Backfill        | Water<br>Strike<br>(m bgl) | Sample<br>Depth (m bgl)                                                                                                                | and I                                                                                                | n Situ Testing<br>Results                                                                                                                | Depth<br>(m bgl)                                        | Level<br>(mOD)                  | Legend                                  | Stra                                                                                                                                                                                                                                                                                                                                                            | tum Description                                                                                                                                                                                               | I                                                                                                                                                                 |                                           |
|                         |                            | 0.00 - 1.00<br>1.00 - 2.00<br>1.00<br>2.00 - 3.00<br>3.00<br>4.00 - 5.00<br>4.00<br>5.00 - 6.00<br>5.00<br>6.00 - 7.00<br>6.00<br>7.00 | B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>SPT<br>(C)<br>SPT<br>(C) | N=8 (1,1/2,2,2,2)<br>N=13 (2,3/3,4,3,3)<br>N=16 (3,4/3,4,4,5)<br>N=30 (5,6/7,7,8,8)<br>N=38 (7,8/9,9,10,10)<br>90 (9,10/90 for<br>225mm) | 5.00<br>6.00<br>7.40                                    | 7.21<br>6.21<br>4.81            |                                         | Firm becoming stiff,<br>gravelly CLAY. Sanc<br>coarse, sub-angular<br>Stiff, brown red, slig<br>with low cobble con<br>is fine to coarse, su<br>are sub-angular to s<br>Limestone lithology.<br>Stiff, brown red, slig<br>with low cobble con<br>is fine to coarse. Gr<br>to subrounded. Co<br>rounded, 63-120mn<br>Boulders are sub-at<br>lithology.<br>End of | htly sandy slightly g<br>tent. Sand is fine to sub-rounded,<br>sangular to sub-rounded,<br>bangular to sub-rou<br>sub-rounded, 63-120<br>tent and low boulde<br>avel is fine to coarsu<br>bbbles are sub-angu | Fravelly CLAY<br>coarse. Gravel<br>unded. Cobbles<br>Dmm dia.,<br>ravelly CLAY<br>r content. Sand<br>e, sub-angular<br>ilar to sub-<br>nology.<br>dia., Limestone | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>8 |
| Grour<br>Struck<br>bgl) |                            | :<br>e to (m After<br>gl) (mins)                                                                                                       |                                                                                                      | ed (m Comment<br>gl) None encounte                                                                                                       | Dep                                                     | e Informa<br>th (m bgl)<br>7.40 | tion:<br>Hole Dia (m<br>200<br>Dando 20 | 200                                                                                                                                                                                                                                                                                                                                                             | 6 70 6 00                                                                                                                                                                                                     | Duration (hh:mm)<br>01:00                                                                                                                                         | Tool<br>Chisel<br>Chisel                  |
| <b>lemai</b><br>able p  |                            | n borehole termin                                                                                                                      | nated at                                                                                             | 7.40m bgl, obstruction.                                                                                                                  | <u>Icdn</u>                                             | lipment:                        |                                         | t Data: GW (m bgl)<br>17/                                                                                                                                                                                                                                                                                                                                       | 01/2022 08:00 0                                                                                                                                                                                               | n (m bgi) <b>Remar</b><br>9.00 Start of s<br>9.40 End of bor                                                                                                      | shift.                                    |


#### P21239 Falling head permeability test

| Location        | Bessborough SHD   |
|-----------------|-------------------|
| BH ID           | BH05              |
| Test            | 1                 |
| Casing diameter | <b>200</b> mm     |
| Casing depth    | <b>1.50</b> m     |
| Borehole depth  | <b>2.00</b> m     |
| GW Influence    | <b>2.00</b> m bgl |
| Date            | 17/01/2022        |

 $H_{w/}H_{o}$ 

2.00

Min Sec depth, m bgl  $H_t$ log H<sub>0</sub>/H<sub>t</sub> vol, cu.m 0 0 0.000 0.00000 2.000 0.000 0.083 5 0.000 0.00000 2.000 0.000 2.000 0.17 0.000 0.00000 0.000 10 0.25 15 0.000 0.00000 2.000 0.000 30 0.000 0.00000 2.000 0.000 0.5 0.75 45 0.000 0.00000 2.000 0.000 1 60 0.000 0.00000 2.000 0.000 1.5 90 0.000 0.00000 2.000 0.000 k<sub>mean</sub> -2 120 0.000 0.00000 2.000  $0.000 \mathbf{k}_{H} = \mathbf{k}_{V}$ 180 0.000 0.00000 2.000 0.000 3 0.00000 2.000 0.000 4 240 0.000 5 300 0.000 0.00000 2.000 0.000 10 600 0.000 0.00000 2.000 0.000 15 900 0.000 0.00000 2.000 0.000 20 1200 0.000 0.00000 2.000 0.000 25 1500 0.000 0.00000 2.000 0.000 30 1800 0.000 0.000 0.00000 2.000 2.000 45 2700 0.000 0.00000 0.000 60 3600 0.000 0.00000 2.000 0.000



Notes:

No Change in groundwater level observed after 60 mins. Infiltration rate mot determined.

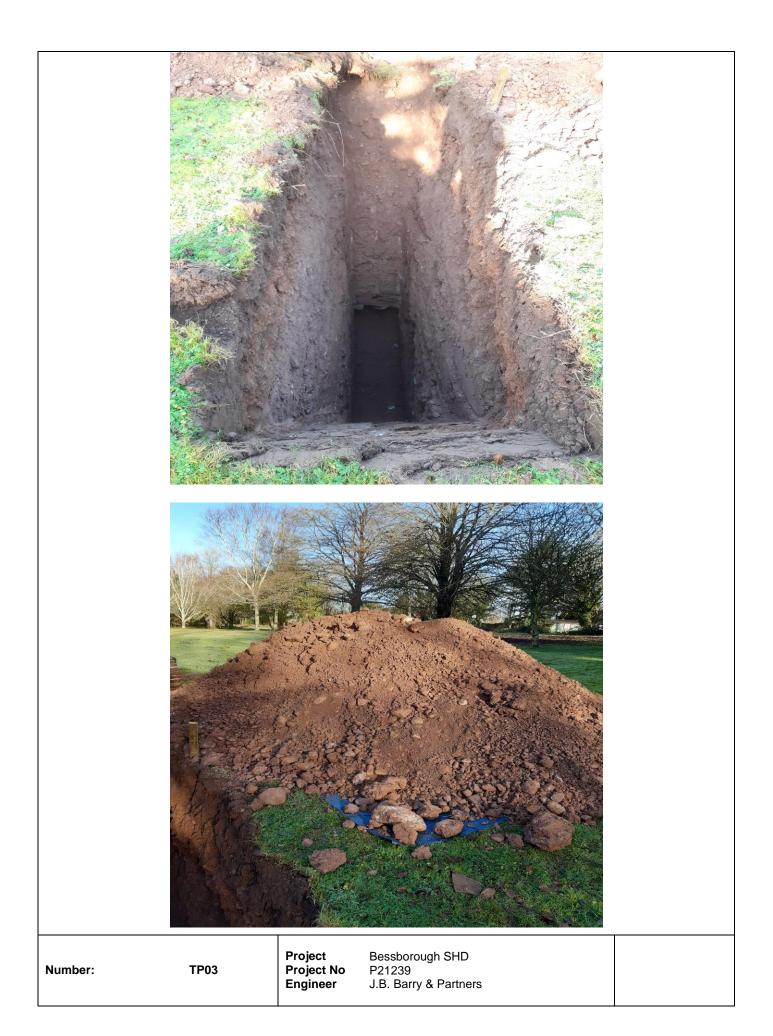
ms<sup>-1</sup>

| pg                      | prior<br>geotechni | ity<br><sub>ical</sub>                                                                                                                                                                                                       |                                                                                                          | www.                                                                                                                                        | Tel: 021 4<br>Fax: 021 4<br>priorityge | 4638690<br>otechnical.                            |                                           |                                                                                  | Drilled By<br>PC<br>Logged By<br>CS                                                                   | Borehole N<br>BH06<br>Sheet 1 of                             | 1                          |
|-------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|
| Projec                  | ct Name            | : Bessbor                                                                                                                                                                                                                    | o SHD                                                                                                    |                                                                                                                                             | Project No.<br>P21239                  | •                                                 | Co-ords:                                  | 171946E - 70                                                                     | 338N                                                                                                  | Hole Type<br>CP                                              | 9                          |
| Locat                   | ion:               | Mahon,                                                                                                                                                                                                                       | Cork                                                                                                     |                                                                                                                                             |                                        |                                                   | Level:                                    | 13.57 m                                                                          | OD                                                                                                    | <b>Scale</b><br>1:50                                         |                            |
| Client                  | :                  | Estuary                                                                                                                                                                                                                      | View E                                                                                                   | nt. Ltd                                                                                                                                     |                                        |                                                   | Date:                                     | 13/01/2022                                                                       | - '                                                                                                   | 13/01/2022                                                   |                            |
| Well<br>Backfill        | Water<br>Strike    |                                                                                                                                                                                                                              |                                                                                                          | n Situ Testing                                                                                                                              | Depth<br>(m.bg)                        |                                                   | Legend                                    | St                                                                               | ratum Description                                                                                     |                                                              |                            |
|                         | (m bgi)            | Depth (m bgl)           0.00 - 1.00           1.00 - 2.00           1.00           2.00 - 3.00           2.00           3.00 - 4.00           3.00           4.00 - 5.00           4.00           5.00 - 6.00           5.00 | Type<br>B<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C)<br>B<br>SPT<br>(C) | Results         N=6 (1,1/2,2,1,1)         N=8 (1,1/2,2,2,2)         N=9 (2,2/3,2,2,2)         N=13 (3,2/3,3,4,3)         N=28 (4,6/6,7,7,8) | (m bgl                                 | 12.57                                             |                                           | Brown, CLAY.<br>Soft becoming stif<br>gravelly silty CLAY<br>fine to coarse, sub | f, brown red, slightly s<br>? Sand is fine to coars<br>-angular to sub-round                          | andy slightly<br>se. Gravel is<br>ded.                       | - 1<br>2<br>3<br>4<br>5    |
|                         |                    | 6.00 - 7.00<br>6.00                                                                                                                                                                                                          | B<br>SPT<br>(C)                                                                                          | N=33 (7,7/8,8,9,8)                                                                                                                          | 6.00                                   | 7.57                                              | (1.11년~11년~11년~11년~11년~11년~11년~11년~11년~11 | CLAY with low cot<br>Gravel is fine to co                                        | ightly sandy slightly g<br>oble content. Sand is i<br>parse, sub-angular to<br>ngular, limestone with | fine to coarse.<br>sub-rounded.                              | 6                          |
|                         |                    |                                                                                                                                                                                                                              |                                                                                                          |                                                                                                                                             | 7.00                                   | 6.57                                              | <u> </u>                                  | Enc                                                                              | of Borehole at 7.000m                                                                                 | 1                                                            | 8                          |
|                         |                    |                                                                                                                                                                                                                              |                                                                                                          |                                                                                                                                             |                                        |                                                   |                                           |                                                                                  | Chicolling Dote:                                                                                      | le ·                                                         |                            |
| Grour<br>Struck<br>bgl) |                    | to (m After<br>gl) (mins)                                                                                                                                                                                                    | Seale<br>bç                                                                                              | d (m<br>I)<br>None encour                                                                                                                   | nt D                                   | ole Informa<br>Pepth (m bgl)<br>7.00<br>quipment: | tion:<br>Hole Dia (m<br>200<br>Dando 20   | 200                                                                              | m) 5.75 5.95<br>6.90 7.00                                                                             | Duration (hh:mm)<br>01:00 C<br>01:00 C                       | Tool<br>Chisel.<br>Chisel. |
| <b>Remar</b><br>Cable p |                    | n borehole termir                                                                                                                                                                                                            | nated at                                                                                                 | 7.0m bgl.                                                                                                                                   |                                        |                                                   | Shif                                      |                                                                                  | 3/01/2022 08:00 0                                                                                     | a (m bgl) <b>Remarl</b><br>.00 Start of s<br>.00 End of bore | hift.                      |

| pgl <sub>p</sub>              | riority<br>otechnical                                                                              |                       |                     | v             | Tel:<br>Fax:<br>vww.prio | 021 4631<br>021 463<br>ritygeote | 8690<br>chnical.ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trial Pit<br><b>TP0</b><br>Sheet 1 | 1   |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|---------------------|---------------|--------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----|--|--|
| Project<br>Name:              | Bessboro Sł                                                                                        | HD                    |                     | Proje<br>P212 | ect No.                  |                                  | Co-ords:171822E - 70467N<br>Level: 16.60m OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date<br>11/01/20                   |     |  |  |
|                               | : Mahon, Co                                                                                        | rk                    |                     | 1 2 1 2       | 00                       |                                  | Dimensions (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scale                              | )   |  |  |
|                               |                                                                                                    |                       |                     |               |                          |                                  | Depth: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1:25<br>Logged                     |     |  |  |
| Client:                       | Estuary Vie                                                                                        |                       |                     |               |                          |                                  | 3.90m BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |     |  |  |
| Water<br>Strike &<br>Backfill | Depth (m)                                                                                          | les & In Situ<br>Type | Results             | Depth<br>(m)  | Level<br>(m OD)          | Legend                           | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |     |  |  |
|                               | 0.70 - 1.50 B<br>0.70 - 1.50 D<br>1.50 - 2.50 B<br>1.50 - 2.50 D<br>2.50 - 3.50 B<br>2.50 - 3.50 D |                       |                     | 0.20          | 16.40                    |                                  | gravelly SILT with grass and rootlets. Sand is fine to<br>coarse. Gravel is fine to coarse, sub-rounded to<br>rounded.<br>(MADE GROUND) Soft to firm, brown, slightly sandy<br>slightly gravelly CLAY with pottery fragments, blocks,<br>timber and plastics. Sand is fine to coarse, Gravel is<br>fine to coarse, sub-rounded to rounded.<br>Soft to firm becoming stiff from 2.80m, brown, slightly<br>sandy slightly gravelly CLAY with medium cobble<br>content and low boulder content. Sand is fine to coarse.<br>Gravel is fine to coarse, sub-rounded to rounded.<br>Cobbles are sub-rounded to rounded. Boulders sub-<br>rounded to rounded. (Assumed Natural). |                                    | 2   |  |  |
| Stability:<br>Plant:          | 14T track mach                                                                                     | ine                   |                     |               | <br>[                    | Groundwa                         | ater: None encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | 5 - |  |  |
| Backfill:<br>Remarks:         |                                                                                                    | ated at 3.90r         | n bgl on rock/ larg | ge boulders.  |                          |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |     |  |  |






| Pgl <sub>geotechn</sub>             | ity<br>Iical           |                      |                      |              | Tel:<br>Fax:    | 021 4631<br>021 463 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------|------------------------|----------------------|----------------------|--------------|-----------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project <sub>Be</sub><br>Name:      | ssboro SH              | D                    |                      |              | ct No.          |                     | Co-ords:171743E - 70394N Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | ahan Car               |                      |                      | P212         | 39              |                     | Level: 13.04m OD 10/01/2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .ocation: Ma                        |                        |                      |                      |              |                 |                     | Dimensions (m):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                     | stuary Vie             |                      |                      |              |                 |                     | Depth:   Image: Constraint of the second s |
| water<br>Strike &<br>Backfill<br>ed | Sample                 | es & In Situ<br>Type | r Testing<br>Results | Depth<br>(m) | Level<br>(m OD) | Legend              | Stratum Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.5                                 | 50 - 1.00<br>50 - 1.00 | B<br>D               |                      | 0.30         | 12.74           |                     | <ul> <li>(TOPSOIL) Soft to firm, brown, slightly sandy slightly gravelly SILT with grass and rootlets. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded.</li> <li>(MADE GROUND) Soft to firm, light brown, slightly sandy slightly gravelly SILT with medium cobble content, medium boulder content and pottery fragments. Sand is fine to coarse. Gravel is fine to coarse, sub-angular to rounded. Cobbles are angular to sub-rounded.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | 20 - 2.30<br>20 - 2.30 | B<br>D               |                      | 1.20         | 11.84           |                     | Soft, light purple brown, slightly gravelly silty SAND.<br>Sand is fine to coarse. Gravel is fine to coarse, sub-<br>angular to rounded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | 30 - 3.20<br>10 - 3.20 | B<br>D               |                      | 2.30         | 10.74           |                     | Soft to firm, purple brown, slightly sandy gravelly CLAY<br>with medium cobble content and medium boulder<br>content. Sand is fine to coarse. Gravel is fine to coarse,<br>sub-rounded to rounded. Cobbles are sub-rounded to<br>rounded. Boulders are sub-rounded to rounded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                     |                        |                      |                      | 3.20         | 9.84            |                     | End of Pit at 3.200m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     |                        |                      |                      |              |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ackfill: Arisi                      | track machi<br>ngs.    |                      | n bgl due to collap  |              |                 | Groundwa            | ater: None encountered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |





| pgl <sub>pl</sub>             | riority<br>otechnical       |               |                    |                                                  | Fax:<br>/ww.prioi | 021 4631<br>021 463<br>ritygeote | 1600<br>8690<br>chnical.ie                                                                                                                                                                                                                | Trial Pit No<br>TP03<br>Sheet 1 of 1 |     |
|-------------------------------|-----------------------------|---------------|--------------------|--------------------------------------------------|-------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----|
| Project<br>Name:              | Bessboro SH                 | HD            |                    | Proje<br>P212                                    | ct No.            |                                  | Co-ords:171737E - 70314N<br>Level: 11.80m OD                                                                                                                                                                                              | Date<br>11/01/20                     | 22  |
| Location                      | : Mahon, Co                 | rk            |                    |                                                  |                   |                                  | Dimensions (m):                                                                                                                                                                                                                           | Scale                                |     |
| Client:                       |                             |               | 4                  |                                                  |                   |                                  | Depth: 17                                                                                                                                                                                                                                 | 1:25<br>Logge                        | d   |
|                               | Estuary Vie                 | les & In Situ |                    |                                                  |                   |                                  | 4.50m BGL                                                                                                                                                                                                                                 | ŐĎ                                   |     |
| Water<br>Strike &<br>Backfill | Depth (m)                   | Туре          | Results            | Depth         Level           (m)         (m OD) |                   |                                  |                                                                                                                                                                                                                                           |                                      |     |
|                               |                             |               |                    |                                                  |                   |                                  | (TOPSOIL) Soft, dark brown, slightly sandy sl<br>gravelly SILT with grass and rootlets. Sand is<br>coarse. Gravel is fine to coarse, sub-angular t<br>rounded.                                                                            | fine to                              |     |
|                               | 0.50 - 1.50<br>0.50 - 1.50  | B<br>D        |                    | 0.35                                             | 11.45             |                                  | (MADE GROUND) Soft to firm, purple brown,<br>sandy gravelly CLAY with medium cobble con<br>rare pottery and glass fragments. Sand is fine<br>coarse. Gravel is fine to coarse, sub-rounded<br>rounded. Cobbles are sub-rounded to rounder | tent and<br>to<br>to                 | 1 - |
|                               | 1.50 - 2.50<br>1.50 - 2.50  | B<br>D        |                    | 1.10                                             | 10.70             |                                  | (ASSUMED NATURAL) Soft to firm, purple br<br>slightly sandy gravelly CLAY with medium cot<br>content. Sand is fine to coarse. Gravel is fine<br>sub-rounded to rounded. Cobbles are sub-rou<br>rounded.                                   | ble<br>to coarse,                    | 2 - |
|                               | 2.50 - 3.50<br>2.50 - 3.50  | B<br>D        |                    |                                                  |                   |                                  |                                                                                                                                                                                                                                           |                                      | 3   |
|                               | 3.50 - 4.50<br>3.50 - 4.50  | B<br>D        |                    |                                                  |                   |                                  |                                                                                                                                                                                                                                           |                                      | 4   |
|                               |                             |               |                    | 4.50                                             | 7.30              | <u> </u>                         | End of Pit at 4.500m                                                                                                                                                                                                                      |                                      |     |
|                               |                             |               |                    |                                                  |                   |                                  |                                                                                                                                                                                                                                           |                                      | 5 - |
| Backfill:                     | 14T track mach<br>Arisings. |               | ogl, scheduled dep | oth.                                             |                   | Groundw                          | ater: None encountered.                                                                                                                                                                                                                   |                                      |     |





| pgl <sub>p</sub>              | riority<br><sup>sotechnical</sup>                                                   |               |         | M             | Tel:<br>Fax:<br>/ww.prio | 021 4631<br>021 463<br>ritygeote                                                                                                                                         | 8690<br>chnical.ie                                                                                                                                                                                                                                                                                                                                     | Trial Pit<br><b>TP04</b><br>Sheet 1 | 4                                                                                           |  |
|-------------------------------|-------------------------------------------------------------------------------------|---------------|---------|---------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|--|
| Project<br>Name:              | Bessboro SH                                                                         | ID            |         | Proje<br>P212 | ct No.                   |                                                                                                                                                                          | Co-ords:172027E - 70362N<br>Level: 12.35m OD                                                                                                                                                                                                                                                                                                           | Date<br>13/01/20                    |                                                                                             |  |
|                               | n: Mahon, Co                                                                        | rk            |         | 1212          | 55                       |                                                                                                                                                                          | Dimensions (m):                                                                                                                                                                                                                                                                                                                                        | Scale                               | )                                                                                           |  |
| Client:                       |                                                                                     |               | J       |               |                          |                                                                                                                                                                          | Depth: <del>2</del>                                                                                                                                                                                                                                                                                                                                    | 1:25<br>Logged                      |                                                                                             |  |
|                               | Estuary Vie                                                                         | les & In Situ |         |               |                          |                                                                                                                                                                          | 4.50m BGL                                                                                                                                                                                                                                                                                                                                              | ŐĎ                                  |                                                                                             |  |
| Water<br>Strike &<br>Backfill | Depth (m)                                                                           | Type          | Results | Depth<br>(m)  | Level<br>(m OD)          | Legend                                                                                                                                                                   | Stratum Description                                                                                                                                                                                                                                                                                                                                    |                                     |                                                                                             |  |
|                               | 0.50 - 1.50<br>0.50 - 1.50                                                          | B<br>D        |         | 0.30          | 12.05                    |                                                                                                                                                                          | <ul> <li>(TOPSOIL) Soft to firm, brown, slightly sandy sligravelly SILT with grass and rootlets. Sand is file coarse. Gravel is fine to medium, sub-angular to rounded.</li> <li>(MADE GROUND): Soft, brown slightly silty slig gravelly SAND with plastic waste. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded.</li> </ul> | ne to<br>o sub-<br>htly<br>o        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>            |  |
|                               |                                                                                     |               |         | 0.70          | 11.65                    |                                                                                                                                                                          | (ASSUMED NATURAL): Soft, brown, slightly sil<br>slightly gravelly SAND. Sand is fine to coarse. O<br>fine to coarse, sub-rounded to rounded.                                                                                                                                                                                                           | ty<br>Gravel is                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
|                               | 1.50 - 2.50<br>1.50 - 2.50                                                          | BD            |         | 1.50          | 10.85                    |                                                                                                                                                                          | Soft to firm, slightly sandy slightly gravelly CLA<br>low cobble content. Sand is fine to coarse. Grav<br>fine to coarse, sub-rounded to rounded. Cobble<br>sub-rounded to rounded.                                                                                                                                                                    | /el is                              | 2                                                                                           |  |
|                               | 2.50 - 3.50<br>2.50 - 3.50                                                          | B<br>D        |         |               |                          |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                     | 3 —                                                                                         |  |
| ×                             | 3.50 - 4.50<br>3.50 - 4.50                                                          | B<br>D        |         |               |                          | : 2014년 2014<br>1월 18년 1월 18년 1월 18년 |                                                                                                                                                                                                                                                                                                                                                        |                                     | 4                                                                                           |  |
|                               |                                                                                     |               |         | 4.50          | 7.85                     |                                                                                                                                                                          | End of Pit at 4.500m                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                                             |  |
|                               | 14T track mach<br>Arisings.                                                         |               |         |               |                          | Groundw                                                                                                                                                                  | ater: 3.90m: Trickle rate of flow                                                                                                                                                                                                                                                                                                                      |                                     | 5 —                                                                                         |  |
| Remarks:                      | Backfill: Arisings.<br>Remarks: Trial pit terminated at 4.50m bgl, scheduled depth. |               |         |               |                          |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                             |  |





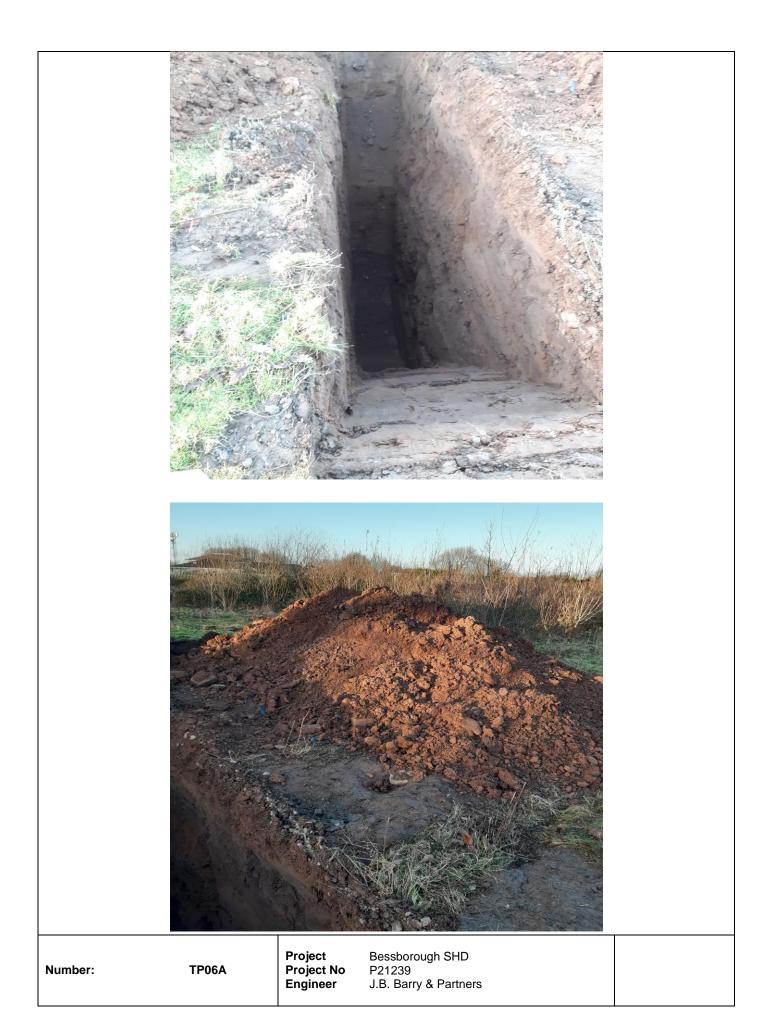
| pgl                               | p <b>riority</b><br>eotechnical |               |                      | M             | Tel:<br>Fax:<br>/ww.prio | 021 463<br>021 463<br>ritygeote                             | 600 TP<br>8690 chnical.ie Sheet                                                                                                                                                                                                                                                                              |                      |  |
|-----------------------------------|---------------------------------|---------------|----------------------|---------------|--------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|
| Project<br>Name:                  | Bessboro Sł                     | HD            |                      | Proje<br>P212 | <b>ct No.</b>            |                                                             | Co-ords:172034E - 70303N Da<br>Level: 12.21m OD 14/01                                                                                                                                                                                                                                                        | l <b>te</b><br>/2022 |  |
|                                   | n: Mahon, Co                    | rk            |                      | 7212          | 39                       |                                                             | Dimonsions (m): 4.10 Sc                                                                                                                                                                                                                                                                                      | ale                  |  |
|                                   |                                 |               |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              | 25<br><b>ged</b>     |  |
| Client:                           | Estuary Vie                     |               |                      |               |                          | -                                                           | 4.50m BGL                                                                                                                                                                                                                                                                                                    |                      |  |
| Water<br>Strike &<br>Backfill     | Samp<br>Depth (m)               | les & In Site | u Testing<br>Results | Depth<br>(m)  | Level<br>(m OD)          | Legend                                                      | Stratum Description                                                                                                                                                                                                                                                                                          |                      |  |
|                                   |                                 |               |                      | 0.30          | 11.91                    |                                                             | (TOPSOIL) Soft to firm, brown, slightly sandy slightly<br>gravelly SILT with grass and rootlets. Sand is fine to<br>coarse. Gravel is fine to medium, sub-angular to sub-<br>rounded.<br>(MADE GROUND) Soft to firm, brown orange, slightly                                                                  |                      |  |
|                                   | 0.70 - 1.50                     | в             |                      | 0.70          | 11.51                    |                                                             | sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse, sub-rounded to rounded.                                                                                                                                                                                                               |                      |  |
|                                   | 0.70 - 1.50                     | D             |                      | 0.70          | 11.01                    | 20292<br>20292<br>20292<br>20292<br>20292<br>20292<br>20292 | Firm to stiff, purple brown, slightly sandy slightly<br>gravelly CLAY with medium cobble content and low<br>boulder content. Sand is fine to coarse. Gravel is fine to<br>coarse, sub-rounded to rounded. Cobbles are sub-<br>rounded to rounded. Boulders are sub-rounded to<br>rounded. (Assumed Natural). | 1 -                  |  |
|                                   | 1.50 - 2.50<br>1.50 - 2.50      | B             |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              | 2 -                  |  |
|                                   | 2.50 - 3.50<br>2.50 - 3.50      | B<br>D        |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              | 3 -                  |  |
|                                   | 3.50 - 4.50<br>3.50 - 4.50      | B<br>D        |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              | 4 -                  |  |
|                                   |                                 |               |                      | 4.50          | 7.71                     | **************************************                      | End of Pit at 4.500m                                                                                                                                                                                                                                                                                         |                      |  |
|                                   |                                 |               |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              |                      |  |
|                                   |                                 |               |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              |                      |  |
|                                   |                                 |               |                      |               |                          |                                                             |                                                                                                                                                                                                                                                                                                              | 5 -                  |  |
| Stability:<br>Plant:<br>Backfill: | 14T track mach                  | line          |                      |               | [                        | Groundw                                                     | ater: 3.90m: Slow rate of flow                                                                                                                                                                                                                                                                               |                      |  |
|                                   |                                 | ated at 4.50  | m bgl, scheduled o   | depth.        |                          |                                                             |                                                                                                                                                                                                                                                                                                              |                      |  |

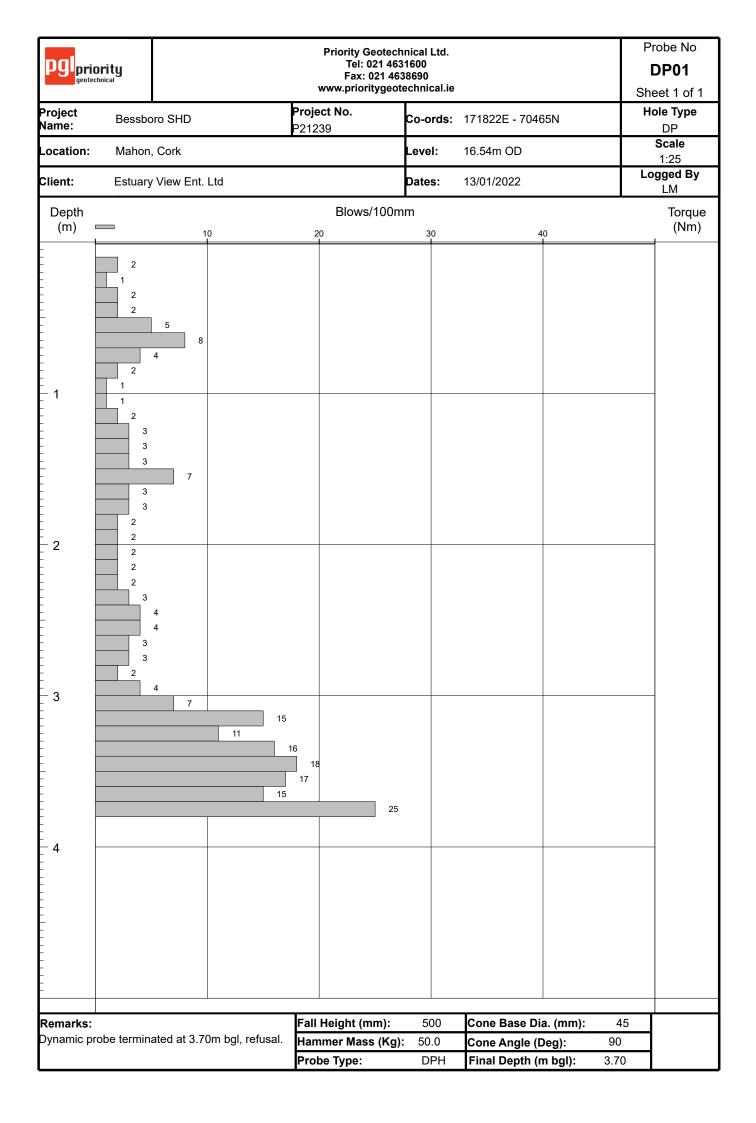


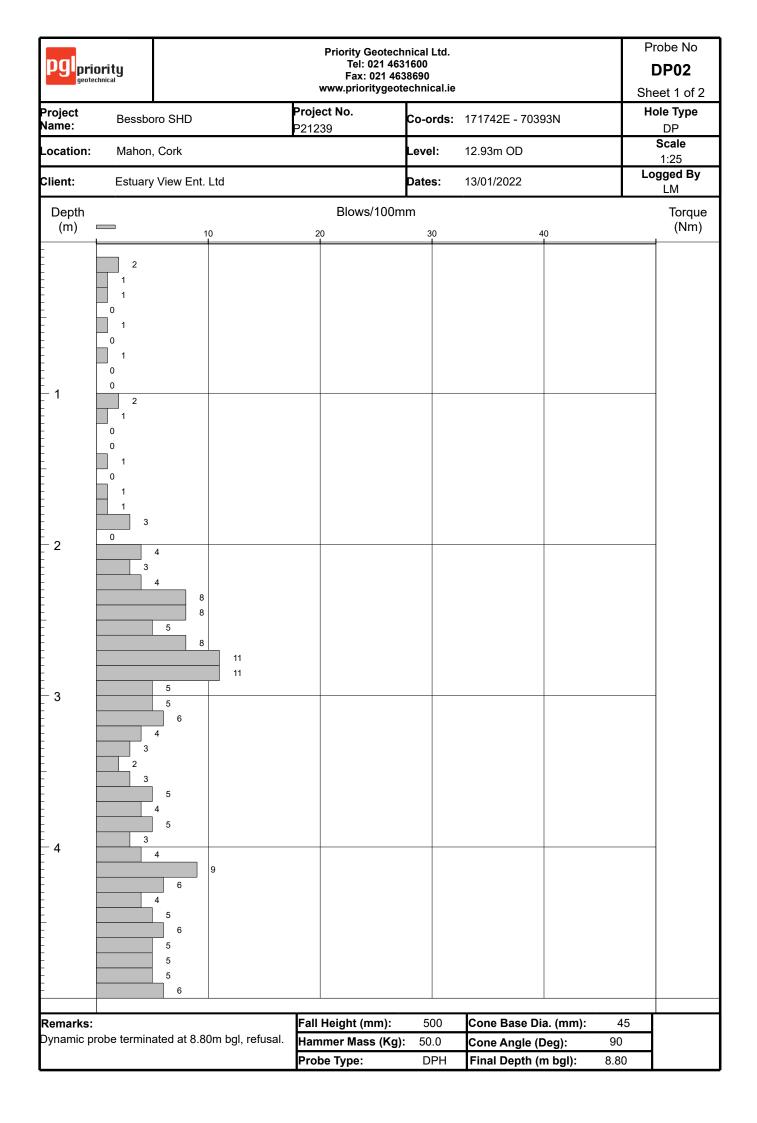


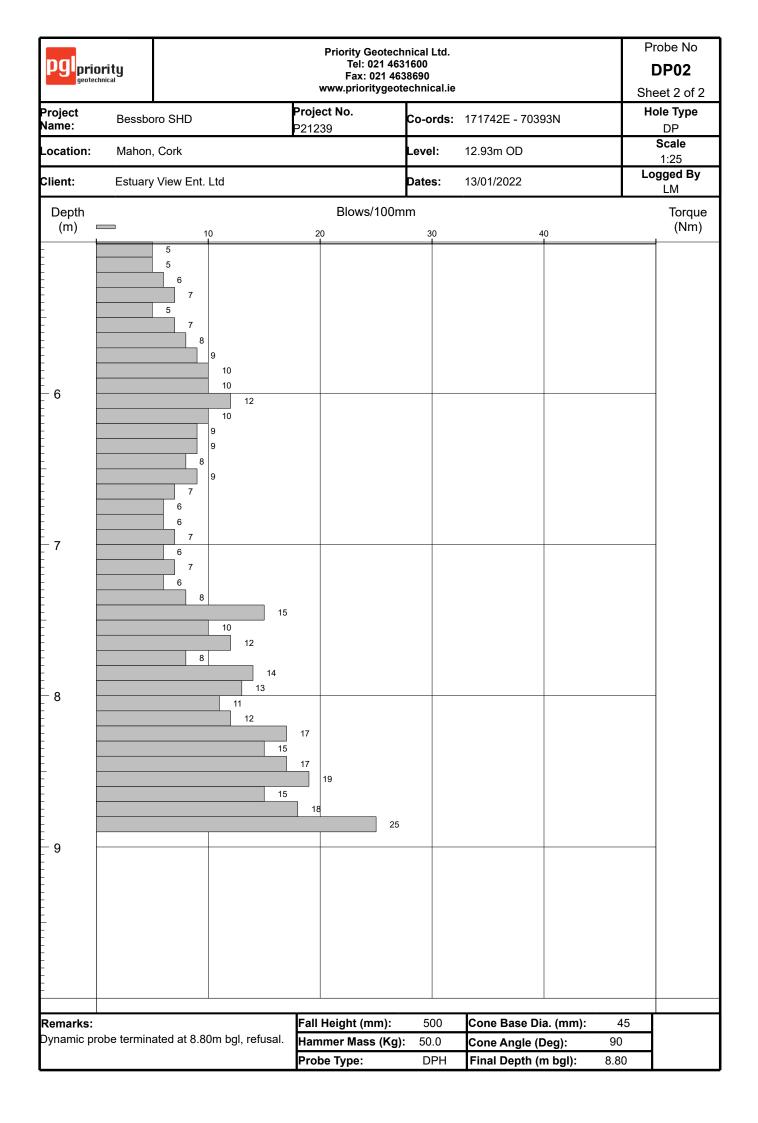
|                                 |                                       |                |                     |               | Priority 0            | Geotechi            | nical Ltd.                                                                                      | Trial Pit No              |
|---------------------------------|---------------------------------------|----------------|---------------------|---------------|-----------------------|---------------------|-------------------------------------------------------------------------------------------------|---------------------------|
| pylp                            | priority                              |                |                     |               | Fax:                  | 021 4631<br>021 463 | 8690                                                                                            | TP06                      |
|                                 |                                       |                |                     |               |                       |                     | chnical.ie                                                                                      | Sheet 1 of 1              |
| Project<br>Name:                | Bessboro Sł                           | HD             |                     | Proje<br>P212 | <b>ect No.</b><br>239 |                     | Co-ords:171941E - 70338N<br>Level: 13.69m OD                                                    | <b>Date</b><br>12/01/2022 |
|                                 | n: Mahon, Co                          | ork            |                     |               |                       |                     | Dimensions (m): 3.40                                                                            | Scale                     |
| Client:                         | Estuary Vie                           |                |                     |               |                       |                     | Depth: <del></del>                                                                              | 1:25<br>Logged            |
|                                 |                                       | oles & In Situ |                     |               |                       |                     | 0.30m BGL                                                                                       | ŌD                        |
| Water<br>Strike &<br>Backfill   | Depth (m)                             | Type           | Results             | Depth<br>(m)  | Level<br>(m OD)       | Legend              | Stratum Description                                                                             |                           |
|                                 | •                                     |                |                     | -             | +                     |                     | (TOPSOIL) Soft to firm, slightly sandy slightly g<br>SILT with grass and rootlets.              | ravelly                   |
|                                 |                                       |                |                     | 0.15          | 13.54                 |                     | (MADE GROUND) Firm to stiff, light blue grey,<br>sandy gravelly CLAY. Sand is fine to coarse. G | slightly                  |
|                                 |                                       |                |                     | 0.30          | 13.39                 |                     | fine to coarse, sub-angular.<br>Concrete Slab - drain/sewer access cover.                       |                           |
|                                 |                                       |                |                     |               |                       |                     | End of Pit at 0.300m                                                                            | /                         |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | 1 -                       |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | 2 -                       |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | -                         |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | 3 -                       |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | 4 -                       |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | -                         |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 | 5 —                       |
| Stability:                      |                                       |                |                     |               | <u> </u>              | Groundw             | ater: None encountered.                                                                         |                           |
| Plant:<br>Backfill:<br>Bomorkov | 14T track mach<br>Arisings.           |                |                     |               |                       |                     |                                                                                                 |                           |
| Remains.                        | <ul> <li>Trial pit termina</li> </ul> | ated at 0.30n  | m bgl, due to encou | untering a co | oncrete slar          | o covering          | an apparent un-used drain. Pit relocated.                                                       |                           |
|                                 |                                       |                |                     |               |                       |                     |                                                                                                 |                           |

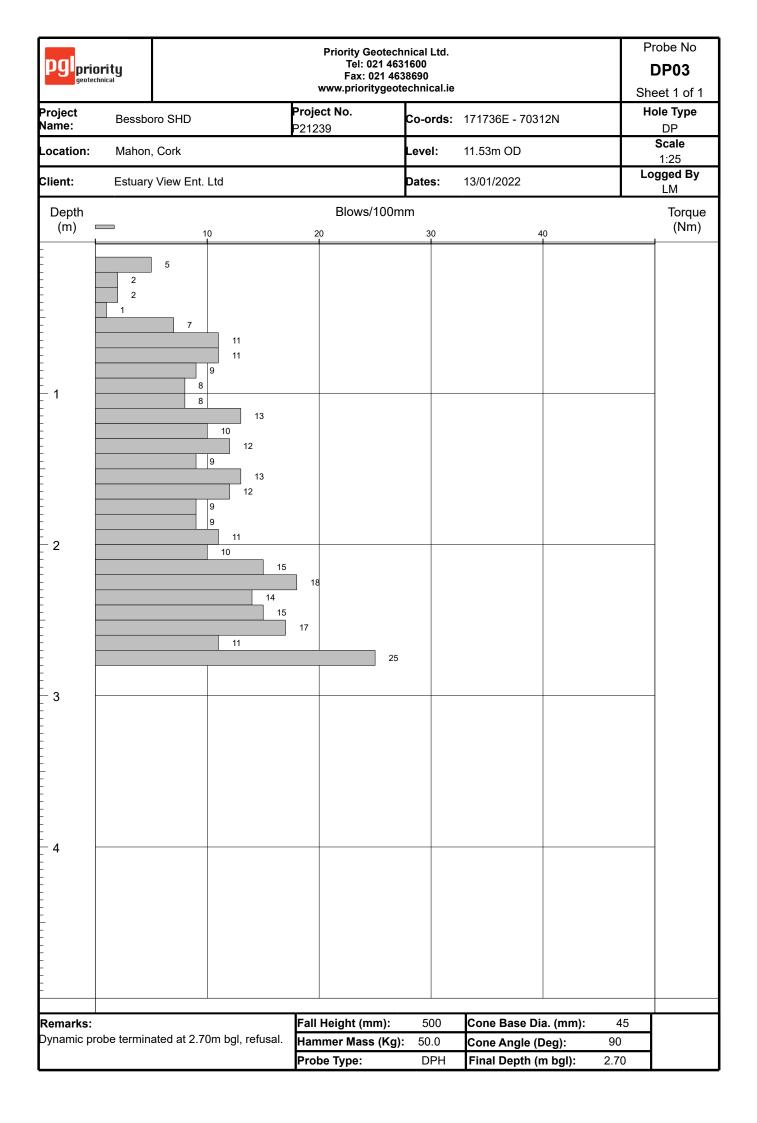
### Photographic Record

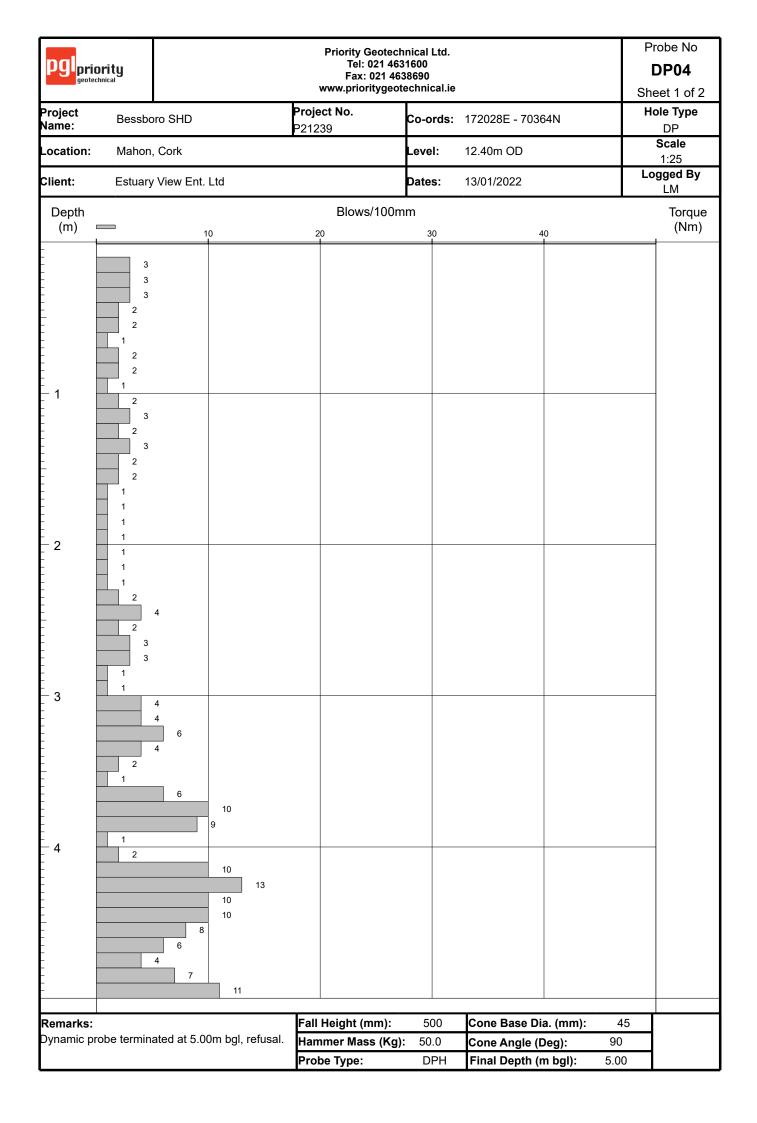


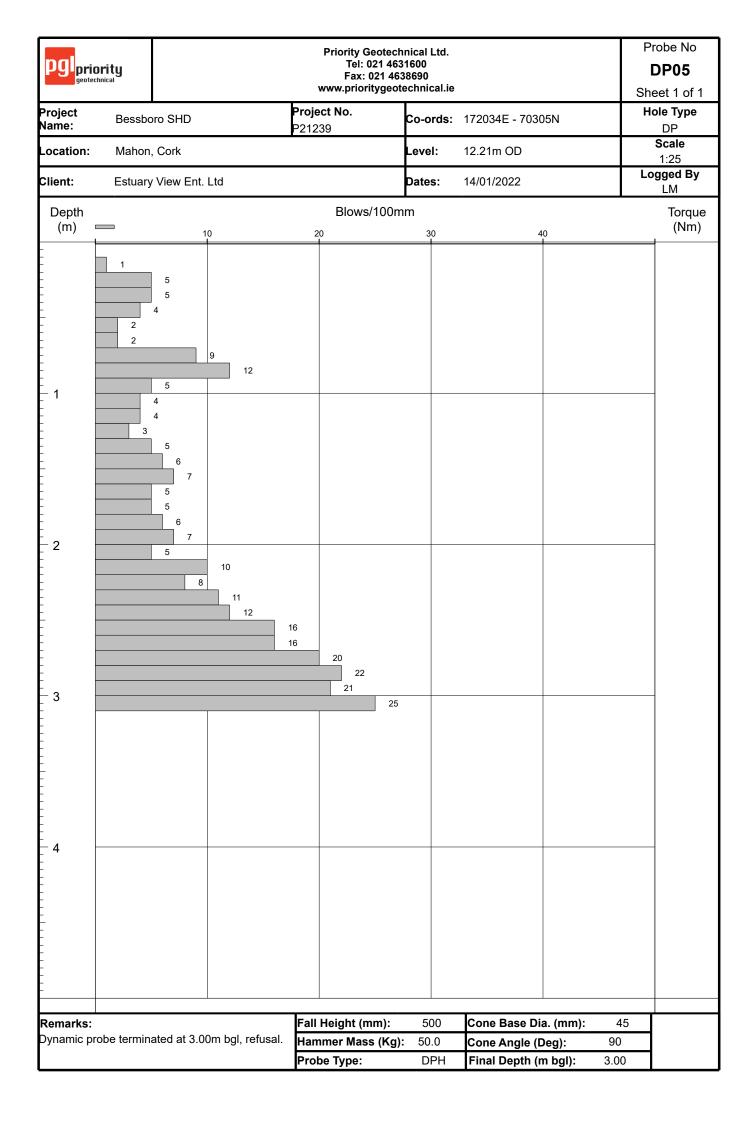


| pgl                           | priority<br>eotechnical     |                                     | v             | Tel:<br>Fax:<br>vww.prio | 021 463<br>021 463<br>ritygeote          | 8690<br>chnical.ie                                                                                                                                                                                                                                                                                                                  | Trial Pit No<br><b>TP06A</b><br>Sheet 1 of 1 |
|-------------------------------|-----------------------------|-------------------------------------|---------------|--------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Project<br>Name:              | Bessboro SI                 | HD                                  | Proje<br>P212 | ect No.<br>30            |                                          | Co-ords:171945E - 70339N<br>Level: 13.61m OD                                                                                                                                                                                                                                                                                        | Date<br>12/01/2022                           |
|                               | n: Mahon, Co                | rk                                  | 1212          | 00                       |                                          | Dimensions (m):                                                                                                                                                                                                                                                                                                                     | Scale                                        |
|                               |                             |                                     |               |                          |                                          | Depth:                                                                                                                                                                                                                                                                                                                              | 1:25<br>Logged                               |
| Client:<br>、∞ =               | Estuary Vie                 | les & In Situ Testing               |               |                          |                                          | 4.60m BGL                                                                                                                                                                                                                                                                                                                           | ÖD                                           |
| Water<br>Strike &<br>Backfill | Depth (m)                   | Type Results                        | Depth<br>(m)  | Level<br>(m OD)          | Legend                                   | Stratum Description                                                                                                                                                                                                                                                                                                                 |                                              |
| 5                             | 0.50 - 1.45<br>0.50 - 1.45  | B<br>D                              | 0.10          | 13.51                    |                                          | (TOPSOIL) Soft to firm, slightly sandy slightly<br>SILT with grass and rootlets.<br>(MADE GROUND) Soft to firm, slightly sandy<br>gravelly CLAY with low cobble content and wa<br>(pottery fragments, glass, plastics). Sand is fir<br>coarse. Gravel is fine to coarse, sub-rounded<br>rounded. Cobbles are sub-rounded to rounder | slightly<br>aste<br>ne to<br>to              |
|                               | 1.50 - 2.50<br>1.50 - 2.50  | B<br>D                              | 1.45          | 12.16                    |                                          | Soft to firm, slightly sandy slightly gravelly CL<br>low cobble content. Sand is fine to coarse. Gr<br>fine to coarse, sub-rounded to rounded. Cobb<br>sub-rounded to rounded.                                                                                                                                                      | avel is                                      |
| •                             | 2.50 - 3.50<br>2.50 - 3.50  | B<br>D                              |               |                          | [28] 28] 28] 28] 28] 28] 28] 28] 28] 28] |                                                                                                                                                                                                                                                                                                                                     | 3 -                                          |
| -                             | 3.50 - 4.50<br>3.50 - 4.50  | B<br>D                              |               |                          |                                          |                                                                                                                                                                                                                                                                                                                                     | 4                                            |
|                               |                             |                                     | 4.60          | 9.01                     |                                          | End of Pit at 4.600m                                                                                                                                                                                                                                                                                                                |                                              |
| Stability:                    | Good                        |                                     |               | <u> </u>                 | Groundw                                  | ater: 3.10m: Trickle rate of flow                                                                                                                                                                                                                                                                                                   | 5                                            |
| Plant:<br>Backfill:           | 14T track mach<br>Arisings. | ine<br>ated at 4.60m bgl, scheduled | depth.        |                          | 2. 3414                                  |                                                                                                                                                                                                                                                                                                                                     |                                              |

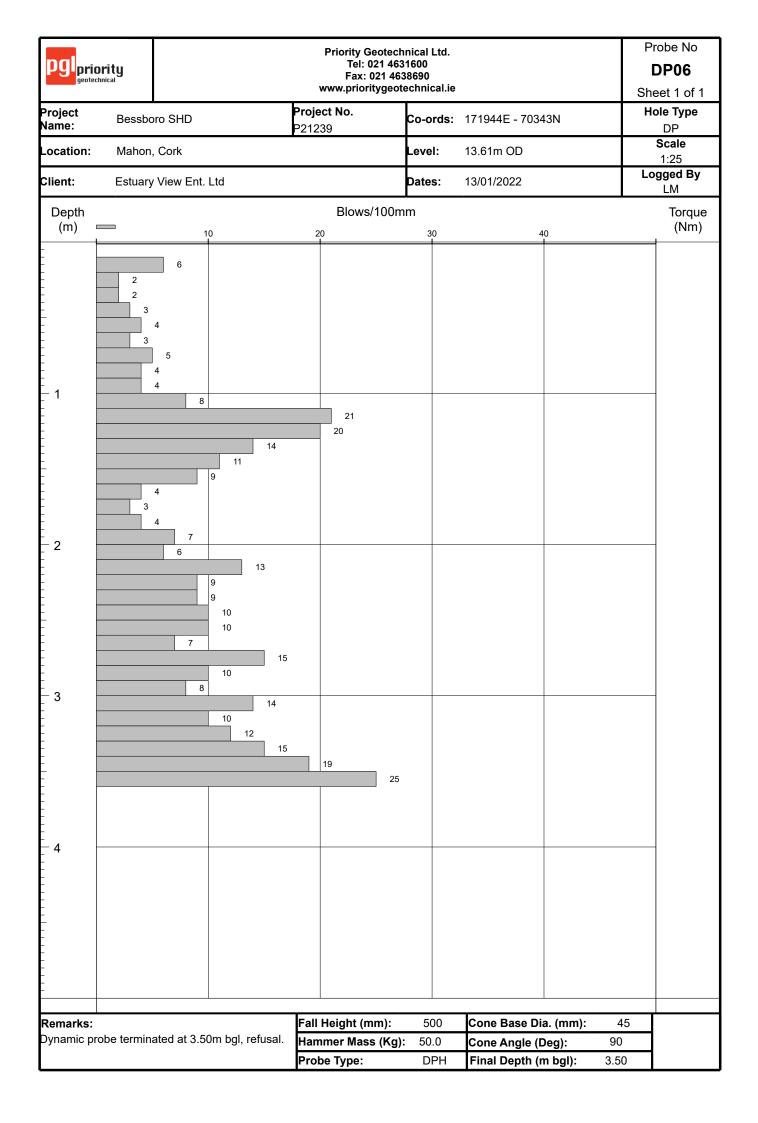

### Photographic Record



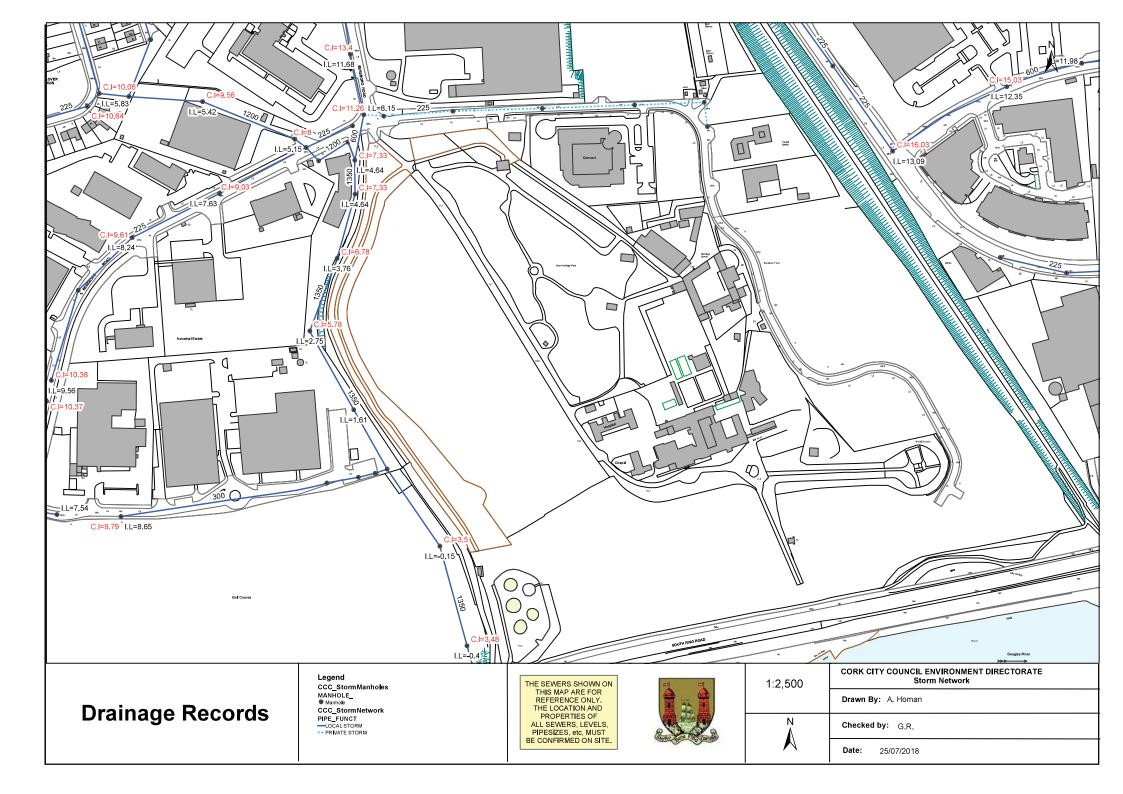








| pgl <sub>geotechn</sub> | rity<br><sup>nical</sup> |                       | Tel: 02<br>Fax: 0                            | eotechnical Ltd.<br>21 4631600<br>21 4638690<br>ygeotechnical.ie |                                                            | Probe No<br><b>DP04</b><br>Sheet 2 of 2 |
|-------------------------|--------------------------|-----------------------|----------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| Project<br>Name:        | Bessbo                   | oro SHD               | Project No.<br>P21239                        | <b>Co-ords</b> : 1720                                            | 028E - 70364N                                              | Hole Type<br>DP                         |
| _ocation:               | Mahon                    | , Cork                |                                              | Level: 12.4                                                      | 0m OD                                                      | <b>Scale</b><br>1:25                    |
| Client:                 | Estuary                  | View Ent. Ltd         |                                              | <b>Dates:</b> 13/0                                               | 1/2022                                                     | Logged By<br>LM                         |
| Depth<br>(m) ⋿          |                          | 10                    |                                              | 100mm                                                            | 40                                                         | Torque<br>(Nm)                          |
|                         |                          | 10                    | 20                                           | 30<br>25                                                         | 40                                                         |                                         |
| 6 - 7 -                 |                          |                       |                                              |                                                                  |                                                            |                                         |
| 8                       |                          |                       |                                              |                                                                  |                                                            |                                         |
| 9 -                     |                          |                       |                                              |                                                                  |                                                            |                                         |
| Remarks:<br>Dynamic pro | be termina               | ated at 5.00m bgl, re | Fall Height (m<br>Hammer Mass<br>Probe Type: | (Кд): 50.0 Со                                                    | ne Base Dia. (mm):<br>ne Angle (Deg):<br>al Depth (m bgl): | 45<br>90                                |





CORK CITY COUNCIL - EXISTING STORMWATER NETWORK





## Appendix 8:

HR WALLINGFORD - GREENFIELD RUNOFF ESTIMATION





# Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

| Calculated by:                | Diarmuid O'Br                                                    | ien                                                                |                                       |                             | Site Details        | 1                                                          |
|-------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------------------------|---------------------|------------------------------------------------------------|
| Site name:                    |                                                                  |                                                                    |                                       |                             | Latitude:           | 51.88555° N                                                |
|                               | Phase 2 - Bes                                                    |                                                                    |                                       |                             | Longitude:          | 8.41036° W                                                 |
| Site location:                | Bessboro, Bla                                                    | ckrock, Cork.                                                      |                                       |                             | 0                   |                                                            |
| in line with Environme        | ent Agency guidance<br>ne SuDS Manual C7<br>formation on greenfi | e "Rainfall runoff m<br>53 (Ciria, 2015) an<br>eld runoff rates ma | anagement for de<br>d the non-statuto | ry standards for SuDS       | Reference:<br>Date: | 1797377310<br>Feb 14 2022 11:01                            |
| Runoff estimati               | on approach                                                      | IH124                                                              |                                       |                             |                     |                                                            |
| Site characteris              | stics                                                            |                                                                    |                                       | Notes                       |                     |                                                            |
| Total site area (ha)          | 1.48                                                             |                                                                    |                                       | (1) Is Q <sub>BAR</sub> < 2 | 01/c/ba2            |                                                            |
| Methodology                   |                                                                  |                                                                    |                                       | (1) IS $Q_{BAR} < 2$        | .0 1/5/114 :        |                                                            |
| Q <sub>BAR</sub> estimation n | nethod: Calcu                                                    | ulate from SPR a                                                   | and SAAR                              | When Q <sub>BAR</sub> is    | s < 2.0 l/s/ha then | limiting discharge rates are set                           |
| SPR estimation m              | ethod: Calcu                                                     | ulate from SOIL                                                    | type                                  | at 2.0 l/s/ha.              |                     |                                                            |
| Soil characteris              | tics Defau                                                       | lt Edite                                                           | ed                                    |                             |                     |                                                            |
| SOIL type:                    | 4                                                                | 4                                                                  |                                       | (2) Are flow rat            | tes < 5.0 l/s?      |                                                            |
| HOST class:                   | N/A                                                              | N/A                                                                |                                       | Mboro flow ro               | taa ara laga than l | E 0 1/2 appart for discharge is                            |
| SPR/SPRHOST:                  | 0.47                                                             | 0.47                                                               |                                       |                             |                     | 5.0 l/s consent for discharge is from vegetation and other |
| Hydrological ch               | naracteristics                                                   | Default                                                            | Edited                                |                             |                     | nsent flow rates may be set<br>ressed by using appropriate |
| SAAR (mm):                    |                                                                  | 1106                                                               | 1106                                  | drainage elem               | •                   |                                                            |
| Hydrological regic            | n:                                                               | 13                                                                 | 13                                    | (3) Is SPR/SPF              | 200ST ~ 0 33        |                                                            |
| Growth curve fact             | or 1 year:                                                       | 0.85                                                               | 0.85                                  |                             | 11031 \$ 0.3        |                                                            |
| Growth curve fact             | or 30 years:                                                     | 1.65                                                               | 1.65                                  |                             |                     | ow enough the use of                                       |
| Growth curve fact             | or 100 years:                                                    | 1.95                                                               | 1.95                                  |                             | avoid discharge     | offsite would normally be<br>e water runoff.               |
| Growth curve fact             | or 200 years:                                                    | 2.15                                                               | 2.15                                  |                             |                     |                                                            |
|                               |                                                                  |                                                                    |                                       |                             |                     |                                                            |

| Greenfield runoff rates | Default | Edited |
|-------------------------|---------|--------|
| Q <sub>BAR</sub> (I/s): | 12.2    | 12.2   |
| 1 in 1 year (l/s):      | 10.37   | 10.37  |
| 1 in 30 years (l/s):    | 20.13   | 20.13  |
| 1 in 100 year (l/s):    | 23.79   | 23.79  |
| 1 in 200 years (l/s):   | 26.24   | 26.24  |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

# We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.



CORK CITY COUNCIL CORRESPONDENCE

BARRY & PARTNERS

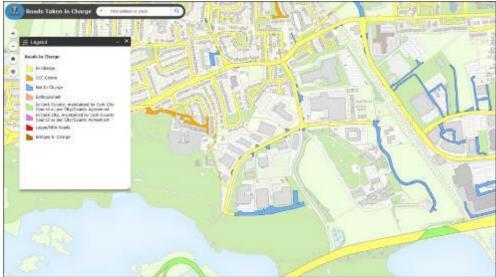



Figure 3. – Status of Taken in Charge / Not in Charge Roads in the Vicinity of the Bessboro SHD Site.

#### 3.4.14.2 Sustainable Urban Drainage Systems (SuDS) & Stormwater:

The report of the Senior Executive Engineer from the Drainage Section states that:

"I note the applicant's proposal to use Q100 instead of Qbar as the greenfield run-off rate. This is acceptable, considering the proximity of the development to outfall to the estuary and the size of the existing outfall pipe at 1350mm. This approach is in line with that taken on other previously proposed developments within the Bessboro site. I have checked the Q100 estimate against my own estimate from the uksuds.com website and I am satisfied it is accurate.

I am pleased to see interception storage being provided for up to 5mm of rainfall...this will have a positive impact on downstream water quality, avoiding the "first flush" which would otherwise be reliant solely on an oil interceptor.

I am pleased to see the number of SuDS measures proposed and would request that design / drawing details are submitted as part of the application for each of the measures proposed. I would request in particular details of how the bio-retention areas are intention to function.

I note from Section 4.3.4 of the Infrastructure Report that it is proposed to discharge surface water from the car park via an interceptor to the storm line (as shown on drawing 21207-JBB-PH1-XX-DR-C-04001). However, based on a review of drawing SB-2020-107-404 it is apparent that this is effectively a "basement carpark", insofar as it is enclosed. As such, in accordance with Section 3.18 of the Greater Dublin Regional Code of Practice for Drainage Works, all drainage from basement areas shall be pumped to ground level prior to discharging by gravity to the public foul sewerage system. Basement car parks must be discharged to the foul system via a petrol/oil interceptor. Access to basement car parks shall be designed such that surface water run-off from the surrounding paved areas cannot flow down the ramp".

#### 3.4.14.3 Flooding:

The report of the Senior Executive Engineer from the Drainage Section states that "*I am satisfied with the Applicant's conclusion that the site is located in Flood Zone 'C' and hence, does not merit further assessment*".

#### SURFACE WATER - MICRODRAINAGE CALCULATIONS



| J.B. Barry & Partners Ltd |                         | Page 1   |
|---------------------------|-------------------------|----------|
| Classon House             | 20217 - Bessborough SHD |          |
| Dundrum Business Park     | (The Farm)              |          |
| Dublin 14                 | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34     | Designed by DOB         |          |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Drainage |
| Innovyze                  | Network 2020.1          |          |
|                           |                         |          |

#### STORM SEWER DESIGN by the Modified Rational Method

#### Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - Scotland and IrelandReturn Period (years)2PIMP (%)100M5-60 (mm)18.800Add Flow / Climate Change (%)0Ratio R0.250Minimum Backdrop Height (m)0.200Maximum Rainfall (mm/hr)50Maximum Backdrop Height (m)4.000Maximum Time of Concentration (mins)30Min Design Depth for Optimisation (m)1.200Foul Sewage (1/s/ha)0.000Min Vel for Auto Design only (m/s)1.00Volumetric Runoff Coeff.0.750Min Slope for Optimisation (1:X)500

Designed with Level Soffits

#### Network Design Table for Storm

| PN     | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) |      | Base<br>Flow (l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|--------|---------------|-------------|----------------|----------------|------|--------------------|-----------|-------------|-------------|--------------|----------------|
| S1.000 | 67.342        | 2.245       | 30.0           | 0.200          | 4.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ð              |
| S2.000 | 25.606        | 0.512       | 50.0           | 0.141          | 4.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ð              |
| S1.001 | 28.275        | 0.690       | 41.0           | 0.048          | 0.00 | 0.0                | 0.600     | 0           | 300         | Pipe/Conduit | ď              |
| S1.002 | 25.583        | 0.627       | 40.8           | 0.025          | 0.00 | 0.0                | 0.600     | 0           | 300         | Pipe/Conduit | ď              |
| S3.000 | 33.931        | 1.131       | 30.0           | 0.092          | 4.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ð              |
| S1.003 | 65.946        | 0.824       | 80.0           | 0.154          | 0.00 | 0.0                | 0.600     | 0           | 300         | Pipe/Conduit | ወ              |
| S4.000 | 33.667        | 0.168       | 200.0          | 0.081          | 4.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ď              |
| S4.001 | 25.332        | 0.127       | 200.0          | 0.020          | 0.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ď              |
| S5.000 | 26.330        | 0.132       | 200.0          | 0.092          | 4.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ð              |
| S4.002 | 35.923        | 0.180       | 200.0          | 0.053          | 0.00 | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ď              |

Network Results Table

| PN               | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m)     | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) |     | Add Flow<br>(l/s) | Vel<br>(m/s) | Cap<br>(1/s)   | Flow<br>(l/s) |
|------------------|-----------------|----------------|------------------|------------------|----------------------|-----|-------------------|--------------|----------------|---------------|
| S1.000           | 50.00           | 4.47           | 15.500           | 0.200            | 0.0                  | 0.0 | 0.0               | 2.40         | 95.3           | 27.1          |
| S2.000           | 50.00           | 4.23           | 13.800           | 0.141            | 0.0                  | 0.0 | 0.0               | 1.85         | 73.7           | 19.1          |
| S1.001<br>S1.002 | 50.00<br>50.00  |                | 13.180<br>12.491 | 0.389<br>0.413   | 0.0                  | 0.0 | 0.0               |              | 174.1<br>174.5 | 52.6<br>56.0  |
| S3.000           | 50.00           | 4.24           | 13.070           | 0.092            | 0.0                  | 0.0 | 0.0               | 2.40         | 95.3           | 12.4          |
| S1.003           | 50.00           | 5.46           | 11.864           | 0.659            | 0.0                  | 0.0 | 0.0               | 1.76         | 124.4          | 89.2          |
| S4.000<br>S4.001 | 50.00<br>50.00  |                | 12.776<br>12.608 | 0.081<br>0.102   | 0.0                  | 0.0 | 0.0               | 0.92<br>0.92 |                | 11.0<br>13.8  |
| S5.000           | 50.00           | 4.48           | 13.000           | 0.092            | 0.0                  | 0.0 | 0.0               | 0.92         | 36.6           | 12.5          |
| S4.002           | 50.00           | 5.72           | 12.481           | 0.247            | 0.0                  | 0.0 | 0.0               | 0.92         | 36.6           | 33.5          |
|                  |                 |                |                  | ©1982-2          | 020 Innov            | yze |                   |              |                |               |

| J.B. Barry & Partners Ltd |                         | Page 2    |
|---------------------------|-------------------------|-----------|
| Classon House             | 20217 - Bessborough SHD |           |
| Dundrum Business Park     | (The Farm)              |           |
| Dublin 14                 | Storm Sewer             | Micro     |
| Date 15/02/2022 11:34     | Designed by DOB         | Drainage  |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Digitiada |
| Innovyze                  | Network 2020.1          |           |

#### Network Design Table for Storm

| PN     | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Base<br>Flow (l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) | Section Type | Auto<br>Design |
|--------|---------------|-------------|----------------|----------------|----------------|--------------------|-----------|-------------|-------------|--------------|----------------|
|        |               |             |                |                |                |                    |           |             |             |              |                |
| S1.004 | 60.260        | 0.753       | 80.0           | 0.075          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | 6              |
| S6.000 | 42.571        | 0.213       | 200.0          | 0.078          | 4.00           | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | <del>0</del>   |
| S6.001 | 9.779         | 0.049       | 200.0          | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | ď              |
| s1.005 | 22.648        | 0.283       | 80.0           | 0.016          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | ď              |
| S1.006 | 33.709        |             | 50.0           | 0.210          | 0.00           |                    | 0.600     | 0           |             | Pipe/Conduit | ď              |
| S1.007 | 12.673        | 0.253       | 50.0           | 0.048          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | ĕ              |
| S1.008 | 26.281        | 0.526       | 50.0           | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | ď              |
| S1.009 | 35.823        | 0.716       | 50.0           | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | - J            |
| S1.010 | 37.725        | 0.843       | 44.8           | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | - J            |
| S1.011 | 6.145         | 0.079       | 78.0           | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 375         | Pipe/Conduit | - J            |
| S1.012 | 25.039        | 0.063       | 397.4          | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 525         | Pipe/Conduit | - J            |
| S1.013 | 35.011        | 0.026       | 1356.0         | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | - J            |
| S1.014 | 27.061        | 0.135       | 200.5          | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | - J            |
| S1.015 | 94.491        | 3.780       | 25.0           | 0.000          | 0.00           | 0.0                | 0.600     | 0           | 225         | Pipe/Conduit | - J            |

#### Network Results Table

| PN     | Rain<br>(mm/hr) | T.C.<br>(mins) | US/IL<br>(m) | Σ I.Area<br>(ha) | Σ Base<br>Flow (l/s) | Foul<br>(l/s) | Add Flow<br>(1/s) | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
|--------|-----------------|----------------|--------------|------------------|----------------------|---------------|-------------------|--------------|--------------|---------------|
|        | ( /             | (              | (/           | ()               |                      | (=/ =/        | (=/ =/            | (,,          | (=, =,       | (=/ =/        |
| S1.004 | 49.64           | 6.21           | 10.965       | 0.981            | 0.0                  | 0.0           | 0.0               | 2.03         | 223.9        | 131.9         |
| S6.000 | 50.00           | 4.77           | 12.320       | 0.078            | 0.0                  | 0.0           | 0.0               | 0.92         | 36.6         | 10.6          |
| S6.001 | 50.00           | 4.95           | 12.107       | 0.078            | 0.0                  | 0.0           | 0.0               | 0.92         | 36.6         | 10.6          |
|        |                 |                |              |                  |                      |               |                   |              |              |               |
| S1.005 | 49.07           | 6.40           | 10.211       | 1.075            | 0.0                  | 0.0           | 0.0               | 2.03         | 223.9        | 142.9         |
| S1.006 | 48.43           | 6.62           | 9.928        | 1.285            | 0.0                  | 0.0           | 0.0               | 2.57         | 283.6        | 168.5         |
| S1.007 | 48.19           | 6.70           | 9.254        | 1.332            | 0.0                  | 0.0           | 0.0               | 2.57         | 283.6        | 173.9         |
| S1.008 | 47.71           | 6.87           | 9.001        | 1.332            | 0.0                  | 0.0           | 0.0               | 2.57         | 283.6        | 173.9         |
| S1.009 | 47.07           | 7.10           | 8.475        | 1.332            | 0.0                  | 0.0           | 0.0               | 2.57         | 283.6        | 173.9         |
| S1.010 | 46.34           | 7.38           | 7.759        | 1.332            | 0.0                  | 0.0           | 0.0               | 2.57         | 283.6        | 173.9         |
| S1.011 | 46.11           | 7.47           | 6.916        | 1.332            | 0.0                  | 0.0           | 0.0               | 1.68         | 185.5        | 173.9         |
| S1.012 | 44.92           | 7.95           | 6.687        | 1.332            | 0.0                  | 0.0           | 0.0               | 1.03         | 222.4        | 173.9         |
| s1.013 | 50.00           | 4.10           | 6.624        | 0.000            | 23.8                 | 0.0           | 0.0               | 0.89         | 35.4         | 23.8          |
| S1.013 | 50.00           | 4.59           | 6.598        | 0.000            | 23.8                 | 0.0           | 0.0               | 0.92         | 36.6         | 23.8          |
|        |                 |                |              |                  |                      |               |                   |              |              |               |
| S1.015 | 50.00           | 5.19           | 6.463        | 0.000            | 23.8                 | 0.0           | 0.0               | 2.63         | 104.5        | 23.8          |

Free Flowing Outfall Details for Storm

| Outfall     | Outfall C | C. Level | I. Level | . Min    | D,L  | W    |
|-------------|-----------|----------|----------|----------|------|------|
| Pipe Number | Name      | (m)      | (m)      | I. Level | (mm) | (mm) |
|             |           |          |          | (m)      |      |      |
| S1.015      | S.A28     | 4.390    | 2.683    | 0.000    | 0    | 0    |

| The Farm)<br>torm Sewer<br>esigned by<br>hecked by<br>etwork 2020<br>Controls fo:<br>S.B22, DS/3<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo™               | ).1<br>o <u>r Storm</u><br>' <u>PN: S1.013, Volume</u><br>-SHE-0205-2380-1680-23<br>1.0                 | 380<br>680<br>3.8<br>ted                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| torm Sewer<br>esigned by<br>hecked by<br>etwork 2020<br>Controls fo:<br>S.B22, DS/<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo <sup>m</sup><br>Objective Mi | ).1<br><u>or Storm</u><br><u>'PN: S1.013, Volume</u><br>-SHE-0205-2380-1680-2:<br>1.6<br>2:<br>Calculat | Drainage<br>e (m <sup>3</sup> ): 10.0<br>380<br>680<br>3.8<br>ted |
| esigned by<br>hecked by<br>etwork 2020<br><u>Controls fo</u><br><u>S.B22, DS/</u><br>Reference MD-<br>h Head (m)<br>flow (1/s)<br>flush-Flo <sup>™</sup><br>Objective Mi  | ).1<br><u>or Storm</u><br><u>'PN: S1.013, Volume</u><br>-SHE-0205-2380-1680-2:<br>1.6<br>2:<br>Calculat | Drainage<br>e (m <sup>3</sup> ): 10.0<br>380<br>680<br>3.8<br>ted |
| hecked by<br>etwork 2020<br>Controls for<br>S.B22, DS/<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo <sup>™</sup><br>Objective Mi                             | ).1<br><u>or Storm</u><br><u>'PN: S1.013, Volume</u><br>-SHE-0205-2380-1680-2:<br>1.6<br>2:<br>Calculat | Drainage<br>e (m <sup>3</sup> ): 10.0<br>380<br>680<br>3.8<br>ted |
| etwork 2020<br>Controls fo:<br>S.B22, DS/3<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo™<br>Objective Mi                                                     | o <u>r Storm</u><br>'PN: S1.013, Volume<br>-SHE-0205-2380-1680-2:<br>1.(<br>2:<br>Calculat              | <u>e (m<sup>3</sup>): 10.0</u><br>380<br>680<br>3.8<br>ted        |
| Controls fo:<br>S.B22, DS/:<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo™<br>Objective Mi                                                                    | o <u>r Storm</u><br>'PN: S1.013, Volume<br>-SHE-0205-2380-1680-2:<br>1.(<br>2:<br>Calculat              | 380<br>680<br>3.8<br>ted                                          |
| S.B22, DS/<br>Reference MD-<br>h Head (m)<br>Flow (1/s)<br>Flush-Flo™<br>Objective Mi                                                                                     | <u>PN: S1.013, Volume</u><br>-SHE-0205-2380-1680-23<br>1.6<br>23<br>Calculat                            | 380<br>680<br>3.8<br>ted                                          |
| n Head (m)<br>Tlow (l/s)<br>Tlush-Flo™<br>Objective Mi                                                                                                                    | 1.0<br>23<br>Calculat                                                                                   | 680<br>3.8<br>ted                                                 |
| n Head (m)<br>Tlow (l/s)<br>Tlush-Flo™<br>Objective Mi                                                                                                                    | 1.0<br>23<br>Calculat                                                                                   | 680<br>3.8<br>ted                                                 |
| Tlow (l/s)<br>Tlush-Flo™<br>Objective Mi                                                                                                                                  | 23<br>Calculat                                                                                          | 3.8<br>ted                                                        |
| Clush-Flo™<br>Objective Mi                                                                                                                                                |                                                                                                         |                                                                   |
| 2                                                                                                                                                                         | inimise upstream stora                                                                                  | age                                                               |
| plication                                                                                                                                                                 |                                                                                                         |                                                                   |
|                                                                                                                                                                           | Surfa                                                                                                   | ace                                                               |
| Available                                                                                                                                                                 | 2                                                                                                       | Yes                                                               |
| neter (mm)                                                                                                                                                                |                                                                                                         | 205                                                               |
| Level (m)                                                                                                                                                                 |                                                                                                         | 624                                                               |
| neter (mm)                                                                                                                                                                |                                                                                                         | 225                                                               |
| neter (mm)                                                                                                                                                                | 18                                                                                                      | 800                                                               |
| (1/s) C                                                                                                                                                                   | Control Points H                                                                                        | Head (m) Flow (l/s)                                               |
| 23.8                                                                                                                                                                      | Kick-Flo®                                                                                               | 1.081 19.3                                                        |
| 23.7 Mean F                                                                                                                                                               | low over Head Range                                                                                     | - 20.5                                                            |
| control devic                                                                                                                                                             | ce other than a Hydro-                                                                                  |                                                                   |
|                                                                                                                                                                           | 23.8<br>23.7 Mean Head/<br>control devi                                                                 |                                                                   |

| Depth (m) | FIOW (I/S) | Deptn (m) H | TOM (T\2) | Deptn (m) | Flow (1/s) | Depth (m) F. | LOW (L/S) | Depth (m) | Elow (1/s) |
|-----------|------------|-------------|-----------|-----------|------------|--------------|-----------|-----------|------------|
|           |            |             |           |           |            |              |           |           |            |
| 0.100     | 7.0        | 0.800       | 22.8      | 2.000     | 25.9       | 4.000        | 36.1      | 7.000     | 47.3       |
| 0.200     | 19.5       | 1.000       | 20.9      | 2.200     | 27.1       | 4.500        | 38.2      | 7.500     | 48.9       |
| 0.300     | 22.7       | 1.200       | 20.3      | 2.400     | 28.2       | 5.000        | 40.2      | 8.000     | 50.4       |
| 0.400     | 23.5       | 1.400       | 21.8      | 2.600     | 29.3       | 5.500        | 42.1      | 8.500     | 51.9       |
| 0.500     | 23.7       | 1.600       | 23.2      | 3.000     | 31.4       | 6.000        | 43.9      | 9.000     | 53.4       |
| 0.600     | 23.5       | 1.800       | 24.6      | 3.500     | 33.8       | 6.500        | 45.6      | 9.500     | 54.8       |

| J.B. Barry              | y & Partr | ners Ltd    |       |                |            |                  |       |                | P        | age 4       |      |
|-------------------------|-----------|-------------|-------|----------------|------------|------------------|-------|----------------|----------|-------------|------|
| Classon Ho              | ouse      |             |       |                | 20217 - 1  | Bessborou        | gh S  | HD             |          |             |      |
| Dundrum Bi              | usiness B | Park        |       |                | (The Farm  |                  |       |                |          |             |      |
| Dublin 14               |           |             |       |                | Storm Sev  | wer              |       |                |          | Micco       |      |
| Date 15/02              | 2/2022 11 |             |       | Designed       | by DOB     |                  |       |                | Micro    |             |      |
| File 2120               |           |             |       | Checked 1      | -          |                  |       |                | Draina   | <b>9</b> 06 |      |
| Innovyze                |           |             |       |                | Network 2  |                  |       |                |          |             |      |
| 111110 V y 2 C          |           |             |       |                | NCCWOIK .  | 2020.1           |       |                |          |             |      |
|                         |           |             |       | Storage        | C+ructur   | og for St        | 0 mm  |                |          |             |      |
|                         |           |             |       | <u>storage</u> | Structur   | <u>es for St</u> | .0111 |                |          |             |      |
|                         |           |             |       |                |            |                  |       |                |          |             |      |
|                         |           |             |       |                |            |                  |       |                |          |             |      |
|                         |           | <u>Cell</u> | ular  | Storage        | Manhole:   | S.B22, D         | S/PN  | : S1.013       |          |             |      |
|                         |           |             |       |                |            |                  |       |                |          |             |      |
|                         |           |             |       | Inve           | rt Level ( | m) 6.624         | Safe  | ty Factor 2.0  |          |             |      |
|                         |           | Infiltrat   | ion C | Coefficient    | Base (m/h  | r) 0.00000       |       | Porosity 0.67  |          |             |      |
|                         |           | Infiltrat   | ion C | Coefficient    | Side (m/h  | r) 0.00000       |       |                |          |             |      |
|                         |           |             |       |                |            |                  |       |                |          |             |      |
| Depth (m)               | Area (m²) | Inf. Area   | (m²)  | Depth (m)      | Area (m²)  | Inf. Area        | (m²)  | Depth (m) Area | . (m²) I | nf. Area    | (m²) |
| 0.000                   | 420.0     |             | 0.0   | 0.900          | 420.0      |                  | 0.0   | 1.681          | 0.0      |             | 0.0  |
| 0.100                   | 420.0     |             | 0.0   |                |            |                  | 0.0   |                | 0.0      |             | 0.0  |
| 0.200                   | 420.0     |             | 0.0   |                |            |                  | 0.0   |                | 0.0      |             | 0.0  |
| 0.300                   | 420.0     |             | 0.0   |                |            |                  | 0.0   |                | 0.0      |             |      |
|                         | 420.0     |             | 0.0   |                |            |                  | 0.0   |                | 0.0      |             | 0.   |
| 0.400                   |           |             |       |                |            |                  |       |                |          |             |      |
| 0.400                   |           |             |       | 1,400          | 420.0      |                  |       |                |          |             | 0.   |
| 0.400<br>0.500<br>0.600 | 420.0     |             | 0.0   |                |            |                  | 0.0   | 2.300          | 0.0      |             |      |

420.0

420.0

1.600

1.680

0.0

0.0

2.500

0.0

0.0

0.0

0.0

0.700

0.800

420.0

420.0

| J.B. Barry & Partners Ltd           |                                                                                                                                                                                    | Page 5   |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Classon House                       | 20217 - Bessborough SHD                                                                                                                                                            |          |
| Dundrum Business Park               | (The Farm)                                                                                                                                                                         |          |
| Dublin 14                           | Storm Sewer                                                                                                                                                                        | Micro    |
| Date 15/02/2022 11:34               | Designed by DOB                                                                                                                                                                    |          |
| File 21207-JBB-PH2-XX-CA-           | Checked by                                                                                                                                                                         | Drainage |
| Innovyze                            | Network 2020.1                                                                                                                                                                     |          |
| <u>Si</u><br>Areal Reduction Factor | tical Results by Maximum Level (Rank 1)<br>imulation Criteria<br>1.000 Additional Flow - % of Total Flow 0.00<br>0 MADD Factor * 10m³/ha Storage 2.00<br>0 Inlet Coefficcient 0.80 | 00<br>00 |

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Foul Sewage per hectare (1/s) 0.000

Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 18.800 Cv (Summer) 0.750Region Scotland and IrelandRatio R 0.250 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

| Profile(s)               | Summe                                   | r and Winter |
|--------------------------|-----------------------------------------|--------------|
| Duration(s) (mins)       | 15, 30, 60, 120, 180, 240, 360, 480, 60 | 0, 720, 960, |
|                          | 1440, 2160, 2880, 4320, 5760, 7200,     | 8640, 10080  |
| Return Period(s) (years) |                                         | 1, 30, 100   |
| Climate Change (%)       |                                         | 10, 10, 10   |

|        | US/MH |     |        | Return | Climate | First  | = (X)  | First (Y) | First (Z) | Overflow | Water<br>Level | Surcharged<br>Depth |
|--------|-------|-----|--------|--------|---------|--------|--------|-----------|-----------|----------|----------------|---------------------|
| PN     | Name  | S   | torm   | Period | Change  | Surch  | narge  | Flood     | Overflow  | Act.     | (m)            | (m)                 |
| S1.000 | S.B1  | 15  | Winter | 1      | +10%    | 100/15 | Summer |           |           |          | 15.587         | -0.138              |
| S2.000 | S.B2  | 15  | Winter | 1      | +10%    | 100/15 | Summer |           |           |          | 13.884         | -0.141              |
| S1.001 | S.B3  | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 13.303         | -0.177              |
| S1.002 | S.B4  | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 12.617         | -0.173              |
| S3.000 | S.B5  | 15  | Winter | 1      | +10%    | 100/15 | Summer |           |           |          | 13.128         | -0.167              |
| S1.003 | S.B6  | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 12.060         | -0.104              |
| S4.000 | S.B7  | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 12.867         | -0.134              |
| S4.001 | S.B8  | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 12.709         | -0.124              |
| S5.000 | S.B9  | 15  | Winter | 1      | +10%    | 100/15 | Summer |           |           |          | 13.099         | -0.126              |
| S4.002 | S.B10 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 12.655         | -0.051              |
| S1.004 | S.B11 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 11.177         | -0.163              |
| S6.000 | S.B12 | 15  | Winter | 1      | +10%    |        |        |           |           |          | 12.409         | -0.136              |
| S6.001 | S.B13 | 15  | Winter | 1      | +10%    |        |        |           |           |          | 12.202         | -0.131              |
| S1.005 | S.B14 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 10.451         | -0.136              |
| S1.006 | S.B15 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 10.147         | -0.156              |
| S1.007 | S.B16 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 9.519          | -0.111              |
| S1.008 | S.B17 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 9.226          | -0.149              |
| S1.009 | S.B18 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 8.696          | -0.154              |
| S1.010 | S.B19 | 15  | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 7.972          | -0.162              |
| S1.011 | S.B20 | 15  | Winter | 1      | +10%    | 1/15   | Summer |           |           |          | 7.372          | 0.081               |
| S1.012 | S.B21 | 180 | Winter | 1      | +10%    | 30/15  | Summer |           |           |          | 7.111          | -0.101              |
| S1.013 | S.B22 | 180 | Winter | 1      | +10%    | 1/15   | Summer |           |           |          | 7.105          | 0.256               |
| S1.014 | S.B23 | 180 | Winter | 1      | +10%    |        |        |           |           |          | 6.732          | -0.091              |
| S1.015 | S.B24 | 180 | Winter | 1      | +10%    |        |        |           |           |          | 6.534          | -0.154              |
|        |       |     |        |        |         |        |        |           |           |          |                |                     |

|       |   |       | Flooded |        |          | Half Drain | Pipe  |        |          |
|-------|---|-------|---------|--------|----------|------------|-------|--------|----------|
|       | τ | JS/MH | Volume  | Flow / | Overflow | Time       | Flow  |        | Level    |
| PN    |   | Name  | (m³)    | Cap.   | (l/s)    | (mins)     | (l/s) | Status | Exceeded |
| S1.00 | 0 | S.B1  | 0.000   | 0.31   |          |            | 29.0  | OK     |          |
| S2.00 | 0 | S.B2  | 0.000   | 0.30   |          |            | 20.7  | OK     |          |

| J.B. Barry & Partners Ltd |                         | Page 6   |
|---------------------------|-------------------------|----------|
| Classon House             | 20217 - Bessborough SHD |          |
| Dundrum Business Park     | (The Farm)              |          |
| Dublin 14                 | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34     | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Diamaye  |
| Innovyze                  | Network 2020.1          |          |

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

|        | IIS/MH | Flooded           | Flow / | Overflow | Half Drain<br>Time | Pipe<br>Flow |            | Level    |
|--------|--------|-------------------|--------|----------|--------------------|--------------|------------|----------|
| PN     | Name   | (m <sup>3</sup> ) | Cap.   | (1/s)    | (mins)             | (1/s)        | Status     | Exceeded |
| S1.001 | S.B3   | 0.000             | 0.35   |          |                    | 55.2         | OK         |          |
| S1.002 | S.B4   | 0.000             | 0.37   |          |                    | 57.8         | OK         |          |
| S3.000 | S.B5   | 0.000             | 0.15   |          |                    | 13.4         | OK         |          |
| S1.003 | S.B6   | 0.000             | 0.74   |          |                    | 87.7         | OK         |          |
| S4.000 | S.B7   | 0.000             | 0.34   |          |                    | 11.6         | OK         |          |
| S4.001 | S.B8   | 0.000             | 0.41   |          |                    | 13.9         | OK         |          |
| S5.000 | S.B9   | 0.000             | 0.40   |          |                    | 13.6         | OK         |          |
| S4.002 | S.B10  | 0.000             | 0.95   |          |                    | 32.7         | OK         |          |
| S1.004 | S.B11  | 0.000             | 0.60   |          |                    | 126.1        | OK         |          |
| S6.000 | S.B12  | 0.000             | 0.32   |          |                    | 11.0         | OK         |          |
| S6.001 | S.B13  | 0.000             | 0.37   |          |                    | 11.1         | OK         |          |
| S1.005 | S.B14  | 0.000             | 0.73   |          |                    | 139.1        | OK         |          |
| S1.006 | S.B15  | 0.000             | 0.64   |          |                    | 161.3        | OK         |          |
| S1.007 | S.B16  | 0.000             | 0.84   |          |                    | 165.9        | OK         |          |
| S1.008 | S.B17  | 0.000             | 0.67   |          |                    | 164.8        | OK         |          |
| S1.009 | S.B18  | 0.000             | 0.65   |          |                    | 165.1        | OK         |          |
| S1.010 | S.B19  | 0.000             | 0.61   |          |                    | 166.0        | OK         |          |
| S1.011 | S.B20  | 0.000             | 1.51   |          |                    | 165.7        | SURCHARGED |          |
| S1.012 | S.B21  | 0.000             | 0.30   |          |                    | 58.4         | OK         |          |
| S1.013 | S.B22  | 0.000             | 1.76   |          | 99                 | 22.4         | SURCHARGED |          |
| S1.014 | S.B23  | 0.000             | 0.66   |          |                    | 22.4         | OK         |          |
| S1.015 | S.B24  | 0.000             | 0.22   |          |                    | 22.4         | OK         |          |
|        |        |                   |        |          |                    |              |            |          |

| Classon Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | u 10                                                                                                                                                                                         | artners L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | td                                                                                                                               |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                           |                                                           | I                                                                                                                                                                                                                                                                             | Page 7                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | use                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | 20217 - H                                                                                                                                                                                                                                                                                                                                                                                                              | Bessborou                         | gh SHD                                                    |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| undrum Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sines                                                                                                                                                                                        | ss Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                          | (The Farr                                                                                                                                                                                                                                                                                                                                                                                                              | n)                                |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| ublin 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | Storm Sev                                                                                                                                                                                                                                                                                                                                                                                                              | ver                               |                                                           |                                                           |                                                                                                                                                                                                                                                                               | Micco                                                                                                                                                                                                                                                 |
| ate 15/02,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /2022                                                                                                                                                                                        | 2 11:34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  |                                                                                                          | Designed                                                                                                                                                                                                                                                                                                                                                                                                               | bv DOB                            |                                                           |                                                           |                                                                                                                                                                                                                                                                               | Micro                                                                                                                                                                                                                                                 |
| 'ile 21207-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α-                                                                                                                               |                                                                                                          | Checked b                                                                                                                                                                                                                                                                                                                                                                                                              | -                                 |                                                           |                                                           |                                                                                                                                                                                                                                                                               | Draina                                                                                                                                                                                                                                                |
| nnovyze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | Network                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| <u>30 year</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Retu                                                                                                                                                                                         | <u>irn Perio</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d Summa                                                                                                                          | ary of                                                                                                   | <u>Critical Res</u>                                                                                                                                                                                                                                                                                                                                                                                                    | sults by N                        | Aaximum I                                                 | evel (Ra                                                  | <u>nk 1)</u>                                                                                                                                                                                                                                                                  | for Stor                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | <u>Simulation C</u>                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                  | tion Fact<br>Cart (min                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        | ditional FI                       | low - % of<br>tor * 10m³                                  |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Но                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  | Level (r                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                      | MADD Fact                         |                                                           | oeffiecien                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Man                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | al) 0.500 Flow                                                                                                                                                                                                                                                                                                                                                                                                         | per Persor                        | n per Day                                                 | (l/per/day                                                | ) 0.000                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F                                                                                                                                                                                            | 'oul Sewage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | per hec                                                                                                                          | ctare (1,                                                                                                | /s) 0.000                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
| Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or of                                                                                                                                                                                        | Toput Und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | coaropho                                                                                                                         | . O N111                                                                                                 | mber of Offlin                                                                                                                                                                                                                                                                                                                                                                                                         | o Controla                        | 0 Number                                                  | of Time / Tr                                              |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | mber of Offifin<br>er of Storage                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                           |                                                           | -                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | y-                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | Sy                                                                                                       | nthetic Rainfa                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Rainfall 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        | -60 (mm) 18                       |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | egion So                                                                                                                         | cotland a                                                                                                | and Ireland                                                                                                                                                                                                                                                                                                                                                                                                            | Ratio R (                         | ).250 Cv (                                                | Winter) 0.                                                | 840                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ain for                                                                                                                          | Flood R                                                                                                  | isk Warning (m                                                                                                                                                                                                                                                                                                                                                                                                         | m) 300.0                          | DVD Sta                                                   | US OFF                                                    |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | TIGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9111 101                                                                                                                         |                                                                                                          | nalysis Timest                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          | DTS Stat                                                                                                                                                                                                                                                                                                                                                                                                               | -                                 |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Profil                                                                                                                           | - (-)                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                                           |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | ,                                                         |                                                           |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Duratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                  | . ,                                                                                                      | 15 30 60 12                                                                                                                                                                                                                                                                                                                                                                                                            | 0 180 240                         |                                                           | Summer and                                                |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | Duratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n(s) (m                                                                                                                          | . ,                                                                                                      | 15, 30, 60, 12<br>1440, 2160                                                                                                                                                                                                                                                                                                                                                                                           |                                   | ), 360, 480                                               | , 600, 72                                                 | 0, 960,                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ret                                                                                                                                                                                          | Duratic<br>turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(s) (m                                                                                                                          | ins)                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                        | 0, 180, 240<br>, 2880, 432        | ), 360, 480                                               | ), 600, 72<br>7200, 8640                                  | 0, 960,                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ret                                                                                                                                                                                          | turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m                                                                                                                          | ins) :                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | ), 360, 480                                               | ), 600, 72<br>7200, 8640<br>1,                            | 0, 960,<br>, 10080                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ret                                                                                                                                                                                          | turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m.<br>.(s) (ye                                                                                                             | ins) :                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | ), 360, 480                                               | ), 600, 72<br>7200, 8640<br>1,                            | 0, 960,<br>, 10080<br>30, 100                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ret                                                                                                                                                                                          | turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m.<br>.(s) (ye                                                                                                             | ins) :                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | ), 360, 480                                               | ), 600, 72<br>7200, 8640<br>1,                            | 0, 960,<br>, 10080<br>30, 100<br>10, 10                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                       |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ret<br>S <b>/MH</b>                                                                                                                                                                          | turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m<br>(s) (ye<br>Change                                                                                                     | ins) :                                                                                                   | 1440, 2160                                                                                                                                                                                                                                                                                                                                                                                                             | , 2880, 432                       | ), 360, 480                                               | 0, 600, 720<br>7200, 8640<br>1, 1<br>10,                  | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                              | turn Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m<br>(s) (ye<br>Change<br><b>Return</b>                                                                                    | ins)<br>ars)<br>(%)                                                                                      | 1440, 2160<br>First (X)                                                                                                                                                                                                                                                                                                                                                                                                | , 2880, 432                       | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water                                                                                                                                                                                                                              | Surcharged                                                                                                                                                                                                                                            |
| PN N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s/mh                                                                                                                                                                                         | turn Period<br>Climate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(s) (m<br>(s) (ye<br>Change<br><b>Return</b>                                                                                    | ins)<br>ars)<br>(%)<br>Climate<br>Change                                                                 | 1440, 2160<br>First (X)                                                                                                                                                                                                                                                                                                                                                                                                | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level                                                                                                                                                                                                                     | Surcharged<br>Depth<br>(m)                                                                                                                                                                                                                            |
| <b>PN N</b><br>S1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S/MH<br>Name                                                                                                                                                                                 | turn Period<br>Climate<br><b>Storm</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period                                                                                 | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%                                                         | 1440, 2160<br>First (X)<br>Surcharge                                                                                                                                                                                                                                                                                                                                                                                   | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)                                                                                                                                                                                                              | Surcharged<br>Depth                                                                                                                                                                                                                                   |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>S/MH</b><br>Name<br>S.B1<br>S.B2<br>S.B3                                                                                                                                                  | turn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30                                                               | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%                                         | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br><b>Water</b><br>Level<br>(m)<br>15.640<br>13.936<br>13.794                                                                                                                                                                         | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31                                                                                                                                                                                                  |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>S/MH</b><br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4                                                                                                                                          | turn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30                                                         | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%                                 | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br><b>Water</b><br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514                                                                                                                                                               | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72                                                                                                                                                                                          |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$3.000         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5                                                                                                                                         | turn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30                                            | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%                                 | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer                                                                                                                                                                                                                                                                                                                | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br><b>Water</b><br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286                                                                                                                                                     | Surcharge<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00                                                                                                                                                                                  |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$3.000         \$           \$1.003         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6                                                                                                                                                 | turn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30                                             | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%                         | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                                | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | 0, 600, 720<br>7200, 8640<br>1, 10,<br>Overflow           | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237                                                                                                                                                  | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00<br>1.07                                                                                                                                                                         |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$3.000         \$           \$1.003         \$           \$4.000         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7                                                                                                                                         | turn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                                 | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%                 | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br><b>Water</b><br><b>Level</b><br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256                                                                                                                          | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.009<br>1.07<br>0.25                                                                                                                                                                |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$3.000         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8                                                                                                                 | turn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30                    | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%         | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br><b>Water Level</b><br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192                                                                                                                          | Surcharger<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00<br>1.07<br>0.25<br>0.36                                                                                                                                                         |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$3.000         \$           \$1.003         \$           \$4.000         \$           \$5.000         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9                                                                                                         | turn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n(s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30               | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188                                                                                                                    | Surcharger<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00<br>1.07<br>0.25<br>0.36<br>-0.03                                                                                                                                                |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$5.000         \$           \$4.001         \$           \$5.000         \$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10                                                                                                 | turn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30              | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119                                                                                                          | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.007<br>1.07<br>0.25<br>0.366<br>-0.03<br>0.41                                                                                                                                      |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$           \$5.000         \$           \$1.002         \$           \$1.003         \$                                                                                                                                                                                                                                                                                                                                                                                                                       | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11                                                                                                         | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944                                                                                                | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00<br>1.07<br>0.25<br>0.36<br>-0.03<br>0.41<br>0.60                                                                                                                                |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$           \$5.000         \$           \$1.004         \$           \$6.000         \$                                                                                                                                                                                                                                                                                                                                                                                                                       | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12                                                                                 | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464                                                                                      | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.007<br>1.07<br>0.255<br>0.366<br>-0.037<br>0.41<br>0.600<br>-0.08                                                                                                                  |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$           \$5.000         \$           \$1.004         \$           \$6.000         \$           \$6.001         \$                                                                                                                                                                                                                                                                                                                                                             | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13                                                                                         | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261                                                                            | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.00<br>1.07<br>0.25<br>0.366<br>-0.03<br>0.41<br>0.60<br>-0.08<br>-0.07                                                                                                             |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$           \$5.000         \$           \$1.004         \$           \$6.000         \$           \$1.005         \$                                                                                                                                                                                                                                                                                                                                                             | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14                                                                                 | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n(s) (m<br>(s) (ye.<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 488<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141                                                                  | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.007<br>1.07<br>0.25<br>0.366<br>-0.03<br>0.41<br>0.60<br>-0.08<br>-0.07<br>0.55                                                                                                    |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$4.000         \$           \$4.001         \$           \$5.000         \$           \$1.004         \$           \$6.000         \$           \$1.005         \$           \$1.006         \$                                                                                                                                                                                                                                                                                                   | S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15                                                                         | Storm<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                      | n (s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724                                                        | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.007<br>1.07<br>0.255<br>0.366<br>-0.037<br>0.41<br>0.600<br>-0.08<br>-0.07<br>0.555<br>0.42                                                                                        |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$1.004         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$                                                                                                                                                                               | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16                                                 | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n (s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046                                              | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.009<br>1.07<br>0.25<br>0.360<br>-0.03<br>0.41<br>0.604<br>-0.08<br>-0.07<br>0.55<br>0.420<br>0.41                                                                                  |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$1.004         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$                                                                                                                     | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17                                         | Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n (s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619                                     | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.009<br>1.07<br>0.25<br>0.360<br>-0.03<br>0.41<br>0.604<br>-0.08<br>-0.07<br>0.55<br>0.420<br>0.41<br>0.24                                                                          |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$6.001         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$           \$1.009         \$                                                                                                                     | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17<br>.B18                                 | Storm<br>15 Winter<br>15 Winter                           | n (s) (m<br>(s) (ye,<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619<br>9.069                            | Surcharged<br>Depth<br>(m)<br>-0.08<br>-0.08<br>0.31<br>0.72<br>-0.007<br>1.07<br>0.255<br>0.366<br>-0.03<br>0.41<br>0.600<br>-0.08<br>-0.07<br>0.555<br>0.421<br>0.41<br>0.24<br>0.21                                                                |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$1.004         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$           \$1.009         \$           \$1.010         \$                                                           | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17<br>.B18<br>.B19                         | Storm<br>15 Winter<br>15 Winter | n (s) (m<br>(s) (ye,<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619<br>9.069<br>8.370                   | Surcharged<br>Depth<br>(m)<br>-0.085<br>-0.085<br>0.312<br>0.722<br>-0.009<br>1.073<br>0.255<br>0.360<br>-0.03 <sup></sup>                                                                                                                            |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$6.001         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$           \$1.009         \$           \$1.010         \$           \$1.011         \$                              | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17<br>.B18<br>.B19<br>.B20                 | Storm<br>15 Winter<br>15 Winter<br>240 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n (s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619<br>9.069<br>8.370<br>7.856          | Surcharged<br>Depth<br>(m)<br>-0.085<br>-0.085<br>0.312<br>0.722<br>-0.009<br>1.073<br>0.255<br>0.360<br>-0.03 <sup>7</sup><br>0.412<br>0.604<br>-0.082<br>-0.077<br>0.554<br>0.420<br>0.411<br>0.242<br>0.215<br>0.236<br>0.236                      |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.001         \$           \$1.002         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$6.001         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$           \$1.009         \$           \$1.010         \$           \$1.011         \$                              | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17<br>.B18<br>.B19<br>.B20<br>.B21         | Storm<br>15 Winter<br>15 Winter<br>240 Winter<br>240 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n (s) (m<br>(s) (ye,<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                 | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619<br>9.069<br>8.370<br>7.856<br>7.849 | Surcharged<br>Depth<br>(m)<br>-0.085<br>-0.085<br>0.312<br>0.722<br>-0.009<br>1.077<br>0.255<br>0.360<br>-0.03 <sup>7</sup><br>0.412<br>0.604<br>-0.082<br>-0.077<br>0.554<br>0.420<br>0.411<br>0.242<br>0.236<br>0.236<br>0.565<br>0.63 <sup>*</sup> |
| PN         N           \$1.000         \$           \$2.000         \$           \$1.001         \$           \$1.002         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.003         \$           \$1.004         \$           \$1.004         \$           \$1.005         \$           \$1.005         \$           \$1.006         \$           \$1.007         \$           \$1.008         \$           \$1.009         \$           \$1.010         \$           \$1.011         \$           \$1.012         \$ | S/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>.B10<br>.B11<br>.B12<br>.B13<br>.B14<br>.B15<br>.B16<br>.B17<br>.B18<br>.B19<br>.B20<br>.B21<br>.B22 | Storm<br>15 Winter<br>15 Winter<br>240 Winter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n (s) (m<br>(s) (ye<br>Change<br>Return<br>Period<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30  | ins)<br>ars)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10%<br>+10% | 1440, 2160<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer | , 2880, 432<br>First (Y)<br>Flood | ), 360, 480<br>20, 5760, <sup>-</sup><br><b>First (Z)</b> | ), 600, 72<br>7200, 8640<br>1,<br>10,<br>Overflow<br>Act. | 0, 960,<br>, 10080<br>30, 100<br>10, 10<br>Water<br>Level<br>(m)<br>15.640<br>13.936<br>13.794<br>13.514<br>13.286<br>13.237<br>13.256<br>13.192<br>13.188<br>13.119<br>11.944<br>12.464<br>12.261<br>11.141<br>10.724<br>10.046<br>9.619<br>9.069<br>8.370<br>7.856          | Surcharged<br>Depth<br>(m)<br>-0.085<br>-0.085<br>0.312<br>0.722<br>-0.009<br>1.077<br>0.255<br>0.360<br>-0.03 <sup>7</sup><br>0.412<br>0.604<br>-0.082<br>-0.077<br>0.554<br>0.420<br>0.411<br>0.242<br>0.215<br>0.236<br>0.565<br>0.63 <sup>7</sup> |

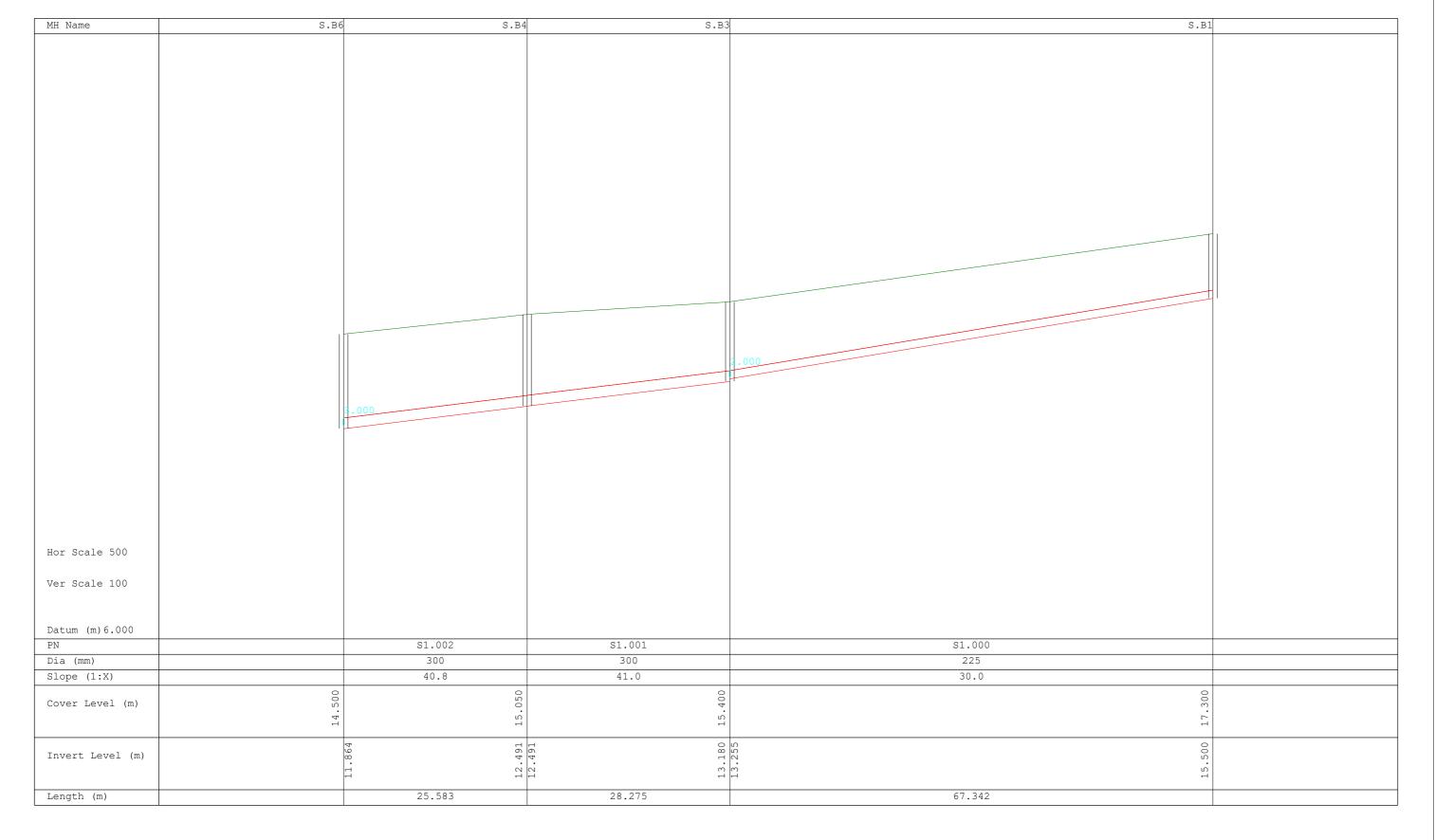
|       |         | Flooded |        |          | Half Drain | Pipe  |        |          |
|-------|---------|---------|--------|----------|------------|-------|--------|----------|
|       | US/MH   | Volume  | Flow / | Overflow | Time       | Flow  |        | Level    |
| PN    | Name    | (m³)    | Cap.   | (1/s)    | (mins)     | (l/s) | Status | Exceeded |
| S1.00 | 00 S.B1 | 0.000   | 0.70   |          |            | 64.6  | OK     |          |
| S2.00 | 00 S.B2 | 0.000   | 0.68   |          |            | 46.0  | OK     |          |

| J.B. Barry & Partners Ltd |                         | Page 8   |
|---------------------------|-------------------------|----------|
| Classon House             | 20217 - Bessborough SHD |          |
| Dundrum Business Park     | (The Farm)              |          |
| Dublin 14                 | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34     | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Diamaye  |
| Innovyze                  | Network 2020.1          |          |

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

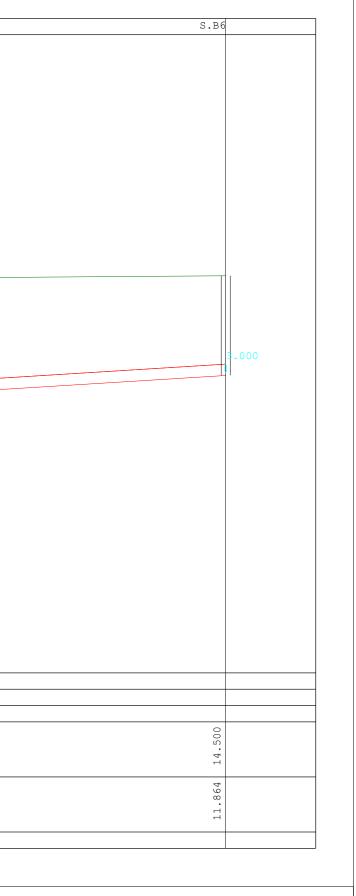
|        | US/MH | Flooded<br>Volume | Flow / | Overflow | Half Drain<br>Time | Pipe<br>Flow |            | Level    |
|--------|-------|-------------------|--------|----------|--------------------|--------------|------------|----------|
| PN     | Name  | (m³)              | Cap.   | (1/s)    | (mins)             | (l/s)        | Status     | Exceeded |
| S1.001 | S.B3  | 0.000             | 0.73   |          |                    | 115.2        | SURCHARGED |          |
| S1.002 | S.B4  | 0.000             | 0.67   |          |                    | 104.9        | SURCHARGED |          |
| S3.000 | S.B5  | 0.000             | 0.33   |          |                    | 29.8         | OK         |          |
| S1.003 | S.B6  | 0.000             | 1.35   |          |                    | 160.2        | SURCHARGED |          |
| S4.000 | S.B7  | 0.000             | 0.61   |          |                    | 20.9         | SURCHARGED |          |
| S4.001 | S.B8  | 0.000             | 0.75   |          |                    | 25.5         | SURCHARGED |          |
| S5.000 | S.B9  | 0.000             | 0.89   |          |                    | 30.1         | OK         |          |
| S4.002 | S.B10 | 0.000             | 1.82   |          |                    | 62.9         | SURCHARGED |          |
| S1.004 | S.B11 | 0.000             | 1.04   |          |                    | 218.5        | SURCHARGED |          |
| S6.000 | S.B12 | 0.000             | 0.70   |          |                    | 24.5         | OK         |          |
| S6.001 | S.B13 | 0.000             | 0.81   |          |                    | 24.6         | OK         |          |
| S1.005 | S.B14 | 0.000             | 1.22   |          |                    | 233.6        | SURCHARGED |          |
| S1.006 | S.B15 | 0.000             | 1.02   |          |                    | 259.4        | SURCHARGED |          |
| S1.007 | S.B16 | 0.000             | 1.32   |          |                    | 259.8        | SURCHARGED |          |
| S1.008 | S.B17 | 0.000             | 1.04   |          |                    | 256.8        | SURCHARGED |          |
| S1.009 | S.B18 | 0.000             | 0.99   |          |                    | 253.2        | SURCHARGED |          |
| S1.010 | S.B19 | 0.000             | 0.92   |          |                    | 248.9        | SURCHARGED |          |
| S1.011 | S.B20 | 0.000             | 0.89   |          |                    | 98.1         | SURCHARGED |          |
| S1.012 | S.B21 | 0.000             | 0.50   |          |                    | 97.5         | SURCHARGED |          |
| S1.013 | S.B22 | 0.000             | 1.86   |          | 176                | 23.6         | SURCHARGED |          |
| S1.014 | S.B23 | 0.000             | 0.70   |          |                    | 23.6         | OK         |          |
| S1.015 | S.B24 | 0.000             | 0.23   |          |                    | 23.6         | OK         |          |

|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | Partners L                                                                                                                                                                                                                                                                                                                                                                                                                | τα                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                                                     | P                                                                                                                                                                                                                                                                                                                 | Page 9                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classon                                                                                                                                                                                                                                                   | House                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20217 - В                                                                                                                                                                                                                                                                                                                                                                                                             | essboroug                              | sh SHD                                |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| Dundrum                                                                                                                                                                                                                                                   | Busine                                                                                                                                                                                                              | ess Park                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (The Farm                                                                                                                                                                                                                                                                                                                                                                                                             | )                                      |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| ublin 1                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storm Sew                                                                                                                                                                                                                                                                                                                                                                                                             | er                                     |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   | Micro                                                                                                                                                                                  |
| ate 15/                                                                                                                                                                                                                                                   | 02/202                                                                                                                                                                                                              | 22 11:34                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Designed                                                                                                                                                                                                                                                                                                                                                                                                              | by DOB                                 |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| File 21207-JBB-PH2-XX-CA-                                                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           | Checked b                                                                                                               | У                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       | Draina                                              |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| nnovyze                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Network 2                                                                                                                                                                                                                                                                                                                                                                                                             | 020.1                                  |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
| <u>100 ye</u>                                                                                                                                                                                                                                             | ear Re                                                                                                                                                                                                              | <u>turn Perio</u>                                                                                                                                                                                                                                                                                                                                                                                                         | <u>d Summ</u> a                                                                                                         | ary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Critical Res                                                                                                                                                                                                                                                                                                                                                                                                          | ults by M                              | Maximum I                             | evel (Ra                                            | ink 1)                                                                                                                                                                                                                                                                                                            | for Stor                                                                                                                                                                               |
| N                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                     | Hot<br>anhole Headle<br>Foul Sewage                                                                                                                                                                                                                                                                                                                                                                                       | Hot St<br>t Start<br>pss Coef<br>per hec                                                                                | art (min<br>Level (m<br>f (Globa<br>tare (l/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>Simulation Cr</u><br>or 1.000 Add<br>s) 0<br>m) 0<br>1) 0.500 Flow<br>s) 0.000<br>ber of Offline                                                                                                                                                                                                                                                                                                                   | litional Fl<br>MADD Fact<br>per Person | or * 10m³/<br>Inlet Co<br>per Day (   | ha Storage<br>effiecient<br>l/per/day)              | e 2.000<br>= 0.800<br>0.000                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           | Number                                                                                                                                                                                                              | of Online (                                                                                                                                                                                                                                                                                                                                                                                                               | Controls                                                                                                                | 1 Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er of Storage S                                                                                                                                                                                                                                                                                                                                                                                                       | tructures                              | 1 Number c                            | f Real Tir                                          | me Cont                                                                                                                                                                                                                                                                                                           | rols O                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | Rainfall N                                                                                                                                                                                                                                                                                                                                                                                                                | Model                                                                                                                   | Sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>nthetic Rainfa</u><br>FSR M5-                                                                                                                                                                                                                                                                                                                                                                                      | <u>11 Details</u><br>60 (mm) 18        | .800 Cv (S                            | ummer) 0.                                           | 750                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         | otland a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nd Ireland                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                    |                                       | ,                                                   |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | Maro                                                                                                                                                                                                                                                                                                                                                                                                                      | jin for                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sk Warning (mm<br>alysis Timeste                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         | AII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DTS Statu                                                                                                                                                                                                                                                                                                                                                                                                             | -                                      | eilla Stat                            | us off                                              |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 515 56464                                                                                                                                                                                                                                                                                                                                                                                                             | 5 011                                  |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                         | <i>.</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                                                     |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | Duratio                                                                                                                                                                                                                                                                                                                                                                                                                   | Profile                                                                                                                 | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 30 60 120                                                                                                                                                                                                                                                                                                                                                                                                           | 180 240                                |                                       | ummer and                                           |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                     | Duratio                                                                                                                                                                                                                                                                                                                                                                                                                   | Profile<br>n(s) (mi                                                                                                     | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5, 30, 60, 120<br>1440, 2160,                                                                                                                                                                                                                                                                                                                                                                                         |                                        | , 360, 480                            | , 600, 720                                          | ), 960,                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                   | Duratio<br>eturn Period                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (mi                                                                                                                | ins) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5, 30, 60, 120<br>1440, 2160,                                                                                                                                                                                                                                                                                                                                                                                         |                                        | , 360, 480                            | , 600, 720<br>200, 8640,<br>1, 3                    | ), 960,<br>10080<br>30, 100                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                   | eturn Period                                                                                                                                                                                                                                                                                                                                                                                                              | n(s) (mi                                                                                                                | ins) 1<br>ars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | , 360, 480                            | , 600, 720<br>200, 8640,<br>1, 3                    | ), 960,<br>10080                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                   | eturn Period                                                                                                                                                                                                                                                                                                                                                                                                              | n(s) (mi<br>(s) (yea                                                                                                    | ins) 1<br>ars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | , 360, 480                            | , 600, 720<br>200, 8640,<br>1, 3                    | ), 960,<br>10080<br>30, 100                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                           | R                                                                                                                                                                                                                   | eturn Period                                                                                                                                                                                                                                                                                                                                                                                                              | n(s) (mi<br>(s) (yea                                                                                                    | ins) 1<br>ars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | , 360, 480                            | , 600, 720<br>200, 8640,<br>1, 3                    | ), 960,<br>10080<br>80, 100<br>10, 10                                                                                                                                                                                                                                                                             | Surcharge                                                                                                                                                                              |
|                                                                                                                                                                                                                                                           | R<br>US/MH                                                                                                                                                                                                          | eturn Period<br>Climate                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change                                                                                          | ins) 1<br>ars)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1440, 2160,                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | , 360, 480<br>0, 5760, 7              | , 600, 720<br>200, 8640,<br>1, 3<br>10,             | ), 960,<br>10080<br>30, 100<br>10, 10<br>Water                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                      |
| PN                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                     | eturn Period<br>Climate                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change<br><b>Return</b>                                                                         | ins) 1<br>ars)<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1440, 2160,                                                                                                                                                                                                                                                                                                                                                                                                           | 2880, 432                              | , 360, 480<br>0, 5760, 7              | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | ), 960,<br>10080<br>30, 100<br>10, 10<br>Water                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                           | US/MH<br>Name                                                                                                                                                                                                       | eturn Period<br>Climate<br><b>Storm</b>                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period                                                                      | ins)   1     ars)   (%)     Climate   Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1440, 2160,<br>First (X)<br>Surcharge                                                                                                                                                                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | ), 960,<br>10080<br>80, 100<br>10, 10<br>Water<br>Level<br>(m)                                                                                                                                                                                                                                                    | Depth<br>(m)                                                                                                                                                                           |
| <b>PN</b><br>\$1.000<br>\$2.000                                                                                                                                                                                                                           | US/MH<br>Name<br>S.B1                                                                                                                                                                                               | eturn Period<br>Climate                                                                                                                                                                                                                                                                                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100                                                               | ins) 1<br>ars)<br>(%)<br>Climate<br>Change<br>+10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)                                                                                                                                                                                                                                                                                                                                                                                              | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>0, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level</pre>                                                                                                                                                                                                                                           | Depth                                                                                                                                                                                  |
| s1.000                                                                                                                                                                                                                                                    | US/MH<br>Name<br>S.B1<br>S.B2                                                                                                                                                                                       | eturn Period<br>Climate<br><b>Storm</b><br>15 Winter                                                                                                                                                                                                                                                                                                                                                                      | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100                                                        | ins) 1<br>ars)<br>(%)<br>Climate<br>Change<br>+10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer                                                                                                                                                                                                                                                                                                                                                                | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>), 960,<br/>10080<br/>80, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870</pre>                                                                                                                                                                                                                        | <b>Depth</b><br>(m)<br>0.14                                                                                                                                                            |
| s1.000<br>s2.000                                                                                                                                                                                                                                          | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3                                                                                                                                                                               | eturn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                                         | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100                                                        | (%)<br>(%)<br>Climate<br>Change<br>+10%<br>+10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer                                                                                                                                                                                                                                                                                                                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>), 960,<br/>10080<br/>80, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999</pre>                                                                                                                                                                                                             | <b>Depth</b><br>(m)<br>0.14<br>0.97                                                                                                                                                    |
| S1.000<br>S2.000<br>S1.001                                                                                                                                                                                                                                | <b>US/MH</b><br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4                                                                                                                                                                | eturn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                                            | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100                                                 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>), 960,<br/>10080<br/>80, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893</pre>                                                                                                                                                                                                  | Depth<br>(m)<br>0.14<br>0.97<br>1.41                                                                                                                                                   |
| S1.000<br>S2.000<br>S1.001<br>S1.002                                                                                                                                                                                                                      | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5                                                                                                                                                               | eturn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                               | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100                                          | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>0, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625</pre>                                                                                                                                                                                       | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10                                                                                                                                   |
| S1.000<br>S2.000<br>S1.001<br>S1.002<br>S3.000                                                                                                                                                                                                            | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6                                                                                                                                                       | eturn Period<br>Climate<br><b>Storm</b><br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                                                  | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100                                   | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer                                                                                                                                                                                                                                                                                                | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>0, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396</pre>                                                                                                                                                                            | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19                                                                                                                           |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000                                                                                                                                                                                 | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7                                                                                                                                               | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                               | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100                            | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                                | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693</pre>                                                                                                                                                      | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69                                                                                                                   |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001                                                                                                                                                                      | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8                                                                                                                                       | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                                  | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100                     | <pre>climate     (%)  Climate     Change     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10%     +10% </pre> | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                                                | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643</pre>                                                                                                                                           | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81                                                                                                           |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000                                                                                                                                                           | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8                                                                                                                                       | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                                     | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100                     | <pre>climate</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643</pre>                                                                                                                                           | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40                                                                                                   |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002                                                                                                                                     | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10                                                                                                                      | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                                        | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100              | <pre>climate climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575</pre>                                                                                                                     | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86                                                                                           |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004                                                                                                                          | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11                                                                                                             | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                                           | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100              | <pre>climate climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026</pre>                                                                                                          | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68                                                                                   |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000                                                                                                                          | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12                                                                                                    | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                              | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100       | <pre>climate climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494</pre>                                                                                               | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05                                                                          |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001                                                                                                    | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13                                                                                           | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                                 | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>climate climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308</pre>                                                                                    | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02                                                                 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005                                                                                                    | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14                                                                                  | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                                    | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148</pre>                                                                         | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56                                                         |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006                                                                                         | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15                                                                         | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                                                                       | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658</pre>                                                              | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35                                                 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007                                                                              | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16                                                                | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer<br>30/15 Summer                                                                                                                                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.801</pre>                                                   | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35                                                 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008                                                                   | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17                                                               | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                                                                                                                                   | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                                                                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.801<br/>10.277</pre>                                        | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90                                 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009                                                        | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18                                                      | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter                           | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582</pre>                                         | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73                         |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009<br>\$1.010                                             | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18<br>S.B19                                     | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                                                 | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582<br/>8.725</pre>                               | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73<br>0.59                 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009<br>\$1.010<br>\$1.011                                  | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18<br>S.B19<br>S.B20                            | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>30 Winter<br>30 Winter<br>360 Winter                                                                                                                     | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582<br/>8.725<br/>8.297</pre>                     | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73<br>0.59<br>1.00         |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009<br>\$1.010<br>\$1.011<br>\$1.012                       | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18<br>S.B19<br>S.B20<br>S.B21                   | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>30 Winter<br>30 Winter<br>360 Winter                                                                                                                     | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582<br/>8.725<br/>8.297<br/>8.290</pre>           | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73<br>0.59<br>1.00         |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009<br>\$1.010<br>\$1.011<br>\$1.012<br>\$1.013            | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18<br>S.B19<br>S.B20<br>S.B21<br>S.B22          | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>30 Winter<br>30 Winter<br>360 Winter<br>360 Winter                                                                                                                    | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>ins) 1 ars) (%)  Climate Change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1440, 2160,<br>First (X)<br>Surcharge<br>100/15 Summer<br>100/15 Summer<br>30/15 Summer                                               | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582<br/>8.725<br/>8.297<br/>8.290<br/>8.283</pre> | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73<br>0.59<br>1.00<br>1.07 |
| \$1.000<br>\$2.000<br>\$1.001<br>\$1.002<br>\$3.000<br>\$1.003<br>\$4.000<br>\$4.001<br>\$5.000<br>\$4.002<br>\$1.004<br>\$6.000<br>\$6.001<br>\$1.005<br>\$1.006<br>\$1.007<br>\$1.008<br>\$1.009<br>\$1.010<br>\$1.011<br>\$1.012<br>\$1.013<br>\$1.014 | US/MH<br>Name<br>S.B1<br>S.B2<br>S.B3<br>S.B4<br>S.B5<br>S.B6<br>S.B7<br>S.B8<br>S.B9<br>S.B10<br>S.B11<br>S.B12<br>S.B13<br>S.B14<br>S.B15<br>S.B16<br>S.B17<br>S.B18<br>S.B19<br>S.B20<br>S.B21<br>S.B22<br>S.B23 | eturn Period<br>Climate<br>Storm<br>15 Winter<br>15 Winter<br>30 Winter<br>30 Winter<br>360 Winter                                                                                                                     | n(s) (mi<br>(s) (yea<br>Change<br>Return<br>Period<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | <pre>climate climate change +10% +10% +10% +10% +10% +10% +10% +10%</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1440, 2160,<br><b>First (X)</b><br><b>Surcharge</b><br>100/15 Summer<br>100/15 Summer<br>30/15 Summer | 2880, 432<br>First (Y)                 | , 360, 480<br>0, 5760, 7<br>First (Z) | , 600, 720<br>200, 8640,<br>1, 3<br>10,<br>Overflow | <pre>D, 960,<br/>10080<br/>30, 100<br/>10, 10<br/>Water<br/>Level<br/>(m)<br/>15.870<br/>14.999<br/>14.893<br/>14.625<br/>14.396<br/>14.355<br/>13.693<br/>13.643<br/>13.626<br/>13.575<br/>13.026<br/>12.494<br/>12.308<br/>12.148<br/>11.658<br/>10.277<br/>9.582<br/>8.725<br/>8.297<br/>8.290</pre>           | Depth<br>(m)<br>0.14<br>0.97<br>1.41<br>1.83<br>1.10<br>2.19<br>0.69<br>0.81<br>0.40<br>0.86<br>1.68<br>-0.05<br>-0.02<br>1.56<br>1.35<br>1.17<br>0.90<br>0.73<br>0.59<br>1.00<br>1.07 |


|       | Flooded |        |        | Half Drain | Pipe       |       |            |          |
|-------|---------|--------|--------|------------|------------|-------|------------|----------|
|       | US/MH   | Volume | Flow / | Overflow   | Time       | Flow  |            | Level    |
| PN    | Name    | (m³)   | Cap.   | (l/s)      | (mins)     | (l/s) | Status     | Exceeded |
| S1.00 | ) S.B1  | 0.000  | 0.86   |            |            | 79.3  | SURCHARGED |          |
| S2.00 | ) S.B2  | 0.000  | 0.78   |            |            | 53.1  | SURCHARGED |          |
|       |         |        | ©1     | 982 - 2020 | ) Innovvze |       |            |          |

| J.B. Barry & Partners Ltd |                         | Page 10  |
|---------------------------|-------------------------|----------|
| Classon House             | 20217 - Bessborough SHD |          |
| Dundrum Business Park     | (The Farm)              |          |
| Dublin 14                 | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34     | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA- | Checked by              | Diamage  |
| Innovyze                  | Network 2020.1          |          |

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm


| PN     | US/MH<br>Name | Flooded<br>Volume<br>(m <sup>3</sup> ) | Flow /<br>Cap. | Overflow<br>(1/s) | Half Drain<br>Time<br>(mins) | Pipe<br>Flow<br>(l/s) | Status     | Level<br>Exceeded |
|--------|---------------|----------------------------------------|----------------|-------------------|------------------------------|-----------------------|------------|-------------------|
|        | Name          | (                                      | cap.           | (1/3)             | (111115)                     | (1)3)                 | blatus     | Inceeded          |
| S1.001 | S.B3          | 0.000                                  | 0.75           |                   |                              | 117.2                 | SURCHARGED |                   |
| S1.002 | S.B4          | 0.000                                  | 0.71           |                   |                              | 110.9                 | SURCHARGED |                   |
| S3.000 | S.B5          | 0.000                                  | 0.36           |                   |                              | 32.2                  | FLOOD RISK |                   |
| S1.003 | S.B6          | 0.000                                  | 1.43           |                   |                              | 169.7                 | FLOOD RISK |                   |
| S4.000 | S.B7          | 0.000                                  | 0.73           |                   |                              | 25.1                  | SURCHARGED |                   |
| S4.001 | S.B8          | 0.000                                  | 0.86           |                   |                              | 29.1                  | SURCHARGED |                   |
| S5.000 | S.B9          | 0.000                                  | 1.01           |                   |                              | 34.3                  | SURCHARGED |                   |
| S4.002 | S.B10         | 0.000                                  | 2.17           |                   |                              | 75.1                  | SURCHARGED |                   |
| S1.004 | S.B11         | 0.000                                  | 1.11           |                   |                              | 233.8                 | SURCHARGED |                   |
| S6.000 | S.B12         | 0.000                                  | 0.92           |                   |                              | 31.9                  | OK         |                   |
| S6.001 | S.B13         | 0.000                                  | 1.00           |                   |                              | 30.4                  | OK         |                   |
| S1.005 | S.B14         | 0.000                                  | 1.36           |                   |                              | 259.4                 | SURCHARGED |                   |
| S1.006 | S.B15         | 0.000                                  | 1.16           |                   |                              | 294.5                 | SURCHARGED |                   |
| S1.007 | S.B16         | 0.000                                  | 1.48           |                   |                              | 292.0                 | SURCHARGED |                   |
| S1.008 | S.B17         | 0.000                                  | 1.18           |                   |                              | 291.5                 | SURCHARGED |                   |
| S1.009 | S.B18         | 0.000                                  | 1.12           |                   |                              | 285.2                 | SURCHARGED |                   |
| S1.010 | S.B19         | 0.000                                  | 1.04           |                   |                              | 281.4                 | SURCHARGED |                   |
| S1.011 | S.B20         | 0.000                                  | 0.86           |                   |                              | 94.4                  | SURCHARGED |                   |
| S1.012 | S.B21         | 0.000                                  | 0.48           |                   |                              | 93.9                  | SURCHARGED |                   |
| S1.013 | S.B22         | 0.000                                  | 1.86           |                   | 252                          | 23.6                  | SURCHARGED |                   |
| S1.014 | S.B23         | 0.000                                  | 0.70           |                   |                              | 23.6                  | OK         |                   |
| S1.015 | S.B24         | 0.000                                  | 0.23           |                   |                              | 23.6                  | OK         |                   |

| J.B. Barry & Partners Ltd                                              |                         | Page 1   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamacje |
| Innovyze                                                               | Network 2020.1          |          |

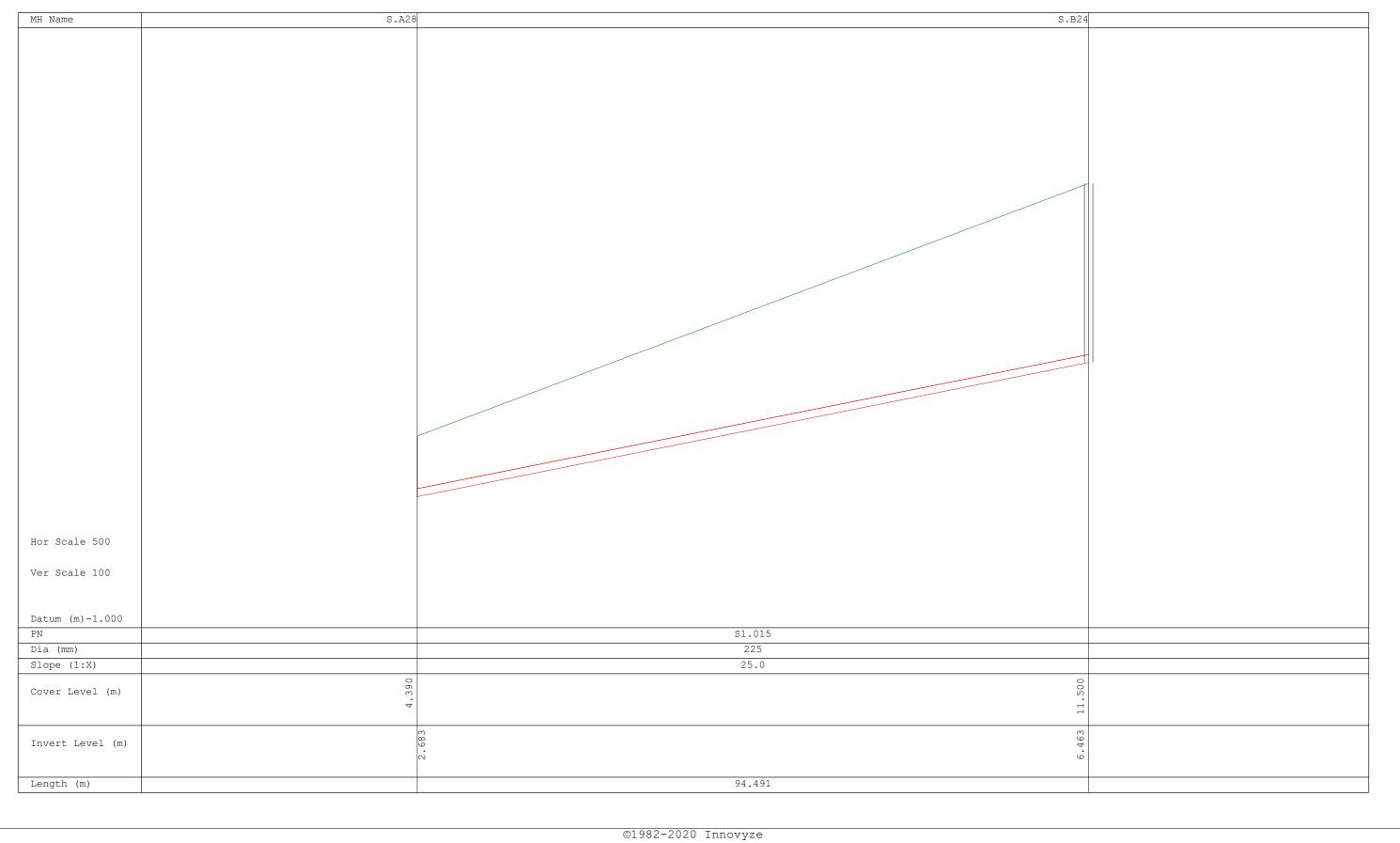


| J.B. Barry & Partners Ltd                                              |                         | Page 2   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamage  |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name          | S.B15  | S.B14  | S.B11            |        |
|------------------|--------|--------|------------------|--------|
|                  | 0.210  |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        | 6.001  | 4.002            |        |
|                  |        | C.001  |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
| Hor Scale 500    |        |        |                  |        |
|                  |        |        |                  |        |
| Ver Scale 100    |        |        |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
| Datum (m)4.000   |        |        |                  |        |
|                  |        | 0.05   | at 004           | ~1     |
| PN               |        | .005   | S1.004           | S1.003 |
| Dia (mm)         |        | 375    | 375              | 300    |
| Slope (1:X)      | 8      | 30.0   | 80.0             | 80.0   |
|                  |        |        | 0                |        |
| Cover Level (m)  | 00     | 0      | 0                |        |
|                  | 13.000 | 13.600 | 14.400           |        |
|                  |        |        |                  |        |
|                  | ω      |        | n o              |        |
| Invert Level (m) | 9.928  | 10.211 | 10.965<br>11.040 |        |
|                  | 6      | 00     |                  |        |
|                  |        |        |                  |        |
|                  |        |        |                  |        |
| Length (m)       |        | 2.648  | 60.260           | 65.946 |



| J.B. Barry & Partners Ltd                                              |                         | Page 3   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | - Micro  |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              |          |
| Innovyze                                                               | Network 2020.1          |          |


| Hor Scale 500<br>Ver Scale 100 |                         |                |            |        |                |
|--------------------------------|-------------------------|----------------|------------|--------|----------------|
| Datum (m)1.000                 |                         |                |            |        |                |
| PN                             | S1.011                  | \$1.010        | S1.009     | S1.008 | S1.007         |
| Dia (mm)                       | 375                     | 375            | 375        | 375    | 375            |
| Slope (1:X)                    | 78.0                    | 44.8           | 50.0       | 50.0   | 50.0           |
| Cover Level (m)                | 10.000                  | 8<br>000       | 10.<br>600 | 12.400 | 12.200         |
| Invert Level (m)               | 6.837<br>6.916<br>6.916 | 7.759<br>7.750 |            | 8.475  | 9.254<br>9.254 |
|                                |                         |                |            | 1      | Į I            |

| B16    | S.B15        |   |
|--------|--------------|---|
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        |              |   |
|        | S1.006       |   |
|        | 375          |   |
|        | 50.0         |   |
| 0      |              |   |
| 12.200 | 13.000       |   |
| 12     | 1<br>13      |   |
| 4      | 5 5 4<br>8 5 |   |
| 9.254  | 9.254        |   |
| 6      | on 61        |   |
|        | 33.709       |   |
|        |              | J |
|        |              |   |
|        |              |   |

| J.B. Barry & Partners Ltd                                              |                         | Page 4              |
|------------------------------------------------------------------------|-------------------------|---------------------|
| Classon House                                                          | 20217 - Bessborough SHD |                     |
| Dundrum Business Park                                                  | (The Farm)              |                     |
| Dublin 14                                                              | Storm Sewer             | – Micro<br>Drainage |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Dcainago            |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye             |
| Innovyze                                                               | Network 2020.1          | 1                   |

| MH Name          | S.B24  | S.B23          | S.B22          | S.B2                                |
|------------------|--------|----------------|----------------|-------------------------------------|
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
|                  |        |                |                |                                     |
| Hor Scale 500    |        |                |                |                                     |
|                  |        |                |                |                                     |
| Ver Scale 100    |        |                |                |                                     |
|                  |        |                |                |                                     |
| Datum (m)1.000   |        |                |                |                                     |
| PN               |        | S1.014         | S1.013         | S1.012                              |
| Dia (mm)         |        | 225            | 225            | 525                                 |
| Slope (1:X)      |        | 200.5          | 1356.0         | 397.4                               |
|                  | 00     | 00             | 9.400          | c                                   |
| Cover Level (m)  | 11.500 | 11.300         |                |                                     |
|                  | H H    | H H            |                | -                                   |
| / .              |        | 0 0 0 0        | 9 0 4 7        | 2 2 4<br>7 2 4                      |
| Invert Level (m) |        | 6.598<br>6.598 | 6.598<br>6.624 | 6.66.62.4<br>6.52.4<br>7.87<br>7.87 |
|                  |        |                |                | ~ ~ ~                               |
| Length (m)       |        | 27.061         | 35.011         | 25.039                              |

| J.B. Barry & Partners Ltd                                              |                         | Page 5   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | - Micro  |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye  |
| Innovyze                                                               | Network 2020.1          |          |



| J.B. Barry & Partners Ltd                                              |                         | Page 6   |  |
|------------------------------------------------------------------------|-------------------------|----------|--|
| Classon House                                                          | 20217 - Bessborough SHD |          |  |
| Dundrum Business Park                                                  | (The Farm)              |          |  |
| Dublin 14                                                              | Storm Sewer             | Micro    |  |
| Date 15/02/2022 11:34                                                  | Designed by DOB         |          |  |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Drainage |  |
| Innovyze                                                               | Network 2020.1          |          |  |

| MH Name          | S.B3   | S.B2                       |   |
|------------------|--------|----------------------------|---|
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        | 1.000                      |   |
|                  | I      | 1                          |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
| Hor Scale 500    |        |                            |   |
|                  |        |                            |   |
| Ver Scale 100    |        |                            |   |
|                  |        |                            |   |
|                  |        |                            |   |
| Datum (m)6.000   |        |                            |   |
| PN               |        | \$2.000                    |   |
| Dia (mm)         |        | 225                        |   |
| Slope (1:X)      |        | 50.0                       |   |
| Cover Level (m)  | 15.400 | 15.600                     |   |
|                  | ນ      | ก                          |   |
|                  |        |                            |   |
|                  |        | 88 00                      |   |
| Invert Level (m) |        | 13.288<br>13.800<br>13.800 |   |
|                  |        |                            |   |
|                  |        |                            | 1 |

| J.B. Barry & Partners Ltd |                                                            |
|---------------------------|------------------------------------------------------------|
| 20217 - Bessborough SHD   |                                                            |
| (The Farm)                |                                                            |
| Storm Sewer               | Micro                                                      |
| Designed by DOB           |                                                            |
| Checked by                | Drainage                                                   |
| Network 2020.1            |                                                            |
|                           | (The Farm)<br>Storm Sewer<br>Designed by DOB<br>Checked by |

| MH Name          | S.B6        | S.B5    |  |
|------------------|-------------|---------|--|
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  | 1.002       |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
| Hor Scale 500    |             |         |  |
|                  |             |         |  |
| Ver Scale 100    |             |         |  |
|                  |             |         |  |
|                  |             |         |  |
| Datum (m)5.000   |             |         |  |
| PN               |             | \$3.000 |  |
| Dia (mm)         |             | 225     |  |
| Slope (1:X)      |             | 30.0    |  |
|                  | 0           |         |  |
| Cover Level (m)  | 0<br>Q      | 0<br>Q  |  |
|                  | 14.500      | 14.500  |  |
|                  |             |         |  |
| Invert Level (m) | ත<br>ෆ<br>ෙ | 13.070  |  |
|                  | 11          | e<br>S  |  |
|                  | H           |         |  |
| Length (m)       |             | 33.931  |  |

| J.B. Barry & Partners Ltd                                              |                         | Page 8    |
|------------------------------------------------------------------------|-------------------------|-----------|
| Classon House                                                          | 20217 - Bessborough SHD |           |
| Dundrum Business Park                                                  | (The Farm)              |           |
| Dublin 14                                                              | Storm Sewer             | Micro     |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage  |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Dialitage |
| Innovyze                                                               | Network 2020.1          |           |

| MH Name          | S.B11  | S.B10   | S.B8   | S.B                                                      |
|------------------|--------|---------|--------|----------------------------------------------------------|
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         | 5.000  |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        | 1 000   |        |                                                          |
|                  |        | 1.003   |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
| Hor Scale 500    |        |         |        |                                                          |
|                  |        |         |        |                                                          |
| Ver Scale 100    |        |         |        |                                                          |
|                  |        |         |        |                                                          |
|                  |        |         |        |                                                          |
| Datum (m)4.000   |        |         |        |                                                          |
| PN               |        | \$4.002 | S4.001 | S4.000                                                   |
| Dia (mm)         |        | 225     | 225    | 225                                                      |
| Slope (1:X)      |        | 200.0   | 200.0  | 200.0                                                    |
|                  | 0      |         |        |                                                          |
| Cover Level (m)  | 40     | 40      | 00<br> | 4<br>6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
|                  | 14.400 | 14.400  | 14.300 | ۲<br>۲                                                   |
|                  |        |         |        |                                                          |
| Invert Level (m) |        | 12.301  | 12.481 | ט<br>1000<br>110000<br>1100000000000000000000000         |
|                  |        |         |        | 12.608                                                   |
|                  |        |         |        |                                                          |
| Length (m)       |        | 35.923  | 25.332 | 33.667                                                   |

|        | 1 |
|--------|---|
| .в7    |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
|        |   |
| 300    |   |
| 14.300 |   |
|        |   |
| 76     |   |
| 12.776 |   |
| 12     |   |
|        |   |
|        | 1 |
|        |   |
|        |   |
|        |   |

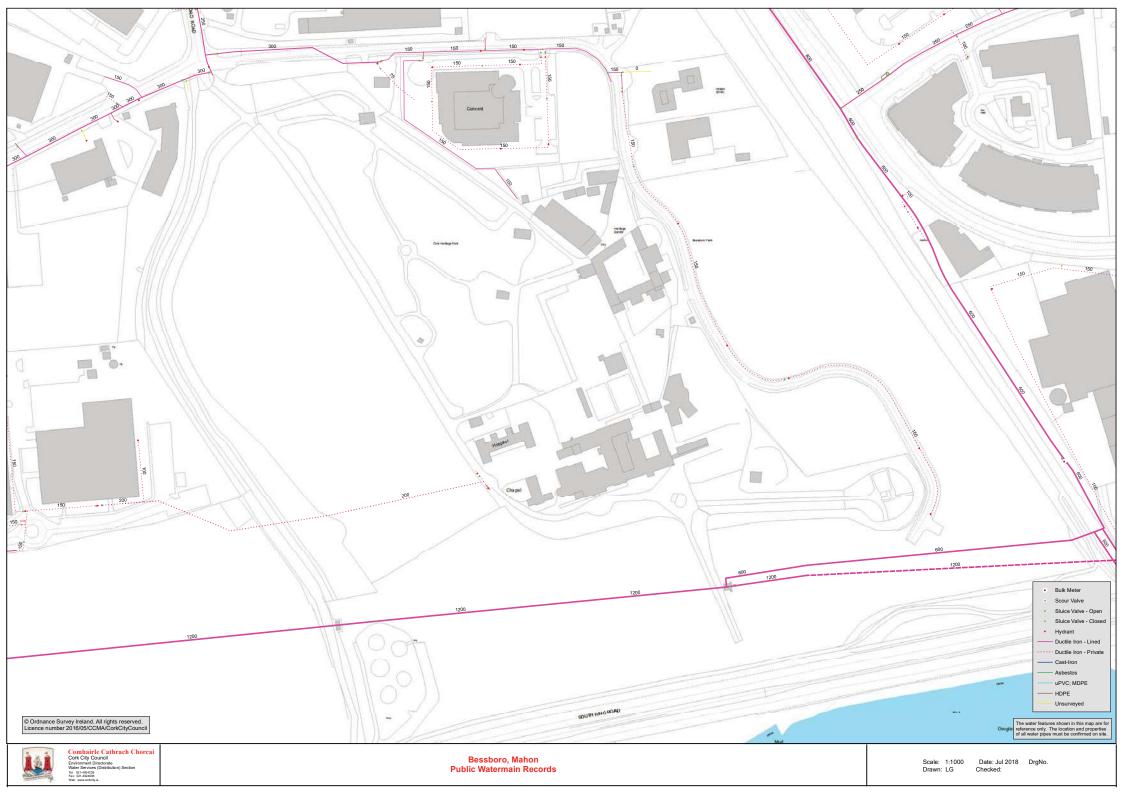
| J.B. Barry & Partners Ltd                                              |                         | Page 9   |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | – Micro  |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Drainage |
| Innovyze                                                               | Network 2020.1          | -        |

| MH Name           | S.B10  | S.BS                       | 9 |
|-------------------|--------|----------------------------|---|
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        | 4.001                      | - |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
| Hor Scale 500     |        |                            |   |
|                   |        |                            |   |
| Ver Scale 100     |        |                            |   |
| Ver Scare 100     |        |                            |   |
|                   |        |                            |   |
|                   |        |                            |   |
| Datum (m) 5.000   |        | 25,000                     |   |
| PN                |        | \$5.000                    |   |
| Dia (mm)          |        | 225                        |   |
| Slope (1:X)       |        | 200.0                      |   |
| Cover Level (m)   | 14.400 | 15.000                     |   |
| COAST TRAST (III) | 4.     | 0                          |   |
|                   | н<br>4 | (U<br>H                    |   |
|                   |        | ω Ω                        |   |
| Invert Level (m)  |        | 12.868<br>13.000<br>13.000 |   |
|                   |        | [3. [3.                    |   |
|                   |        |                            |   |
| Length (m)        |        | 26.330                     |   |

| J.B. Barry & Partners Ltd                                              |                         | Page 10  |
|------------------------------------------------------------------------|-------------------------|----------|
| Classon House                                                          | 20217 - Bessborough SHD |          |
| Dundrum Business Park                                                  | (The Farm)              |          |
| Dublin 14                                                              | Storm Sewer             | Micro    |
| Date 15/02/2022 11:34                                                  | Designed by DOB         | Drainage |
| File 21207-JBB-PH2-XX-CA-C-04303_MicroDrainage_Analysis_(The_Farm).MDX | Checked by              | Diamaye  |
| Innovyze                                                               | Network 2020.1          |          |

| MH Name          | S.B14  | S.B13            | S.B1   | 2   |
|------------------|--------|------------------|--------|-----|
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  | 1      |                  |        | TI. |
|                  |        |                  |        |     |
|                  |        |                  |        | +   |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        | 1.004            |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
|                  |        |                  |        |     |
| or Scale 500     |        |                  |        |     |
|                  |        |                  |        |     |
| er Scale 100     |        |                  |        |     |
|                  |        |                  |        |     |
| atum (m)4.000    |        |                  |        |     |
| PN               |        | S6.001           | S6.000 |     |
| Dia (mm)         |        | 225              | 225    |     |
| Slope (1:X)      |        | 200.0            | 200.0  |     |
|                  | 0      | . 600            | C      |     |
| over Level (m)   | 13.600 | ۳                |        |     |
|                  | H<br>H | ц<br>Ю           | ۰<br>۲ |     |
|                  |        | 58               | 0      |     |
|                  |        |                  |        |     |
| Invert Level (m) |        |                  |        |     |
| Invert Level (m) |        | 12.058<br>12.107 | 12.107 |     |

#### ATTENUATION ESTIMATES, STORAGE TANK SIZING




| PROJECT:             |               | Bessborou                             | gh SHD De        | velopmer     | nt       |                |                     | $\mathbf{R}$ | ARRY         |
|----------------------|---------------|---------------------------------------|------------------|--------------|----------|----------------|---------------------|--------------|--------------|
| DESCRIPTION:         |               | 21207-JBB-PH2                         | -XX-CA-C-044     |              | PARTNERS |                |                     |              |              |
|                      |               | · · · · · · · · · · · · · · · · · · · |                  |              |          |                |                     |              | ng engineers |
| DATE:                | 17/02/2022    |                                       | SHEET            | 100 Year +1  | 10%      |                | L                   |              |              |
| Catchment Ch         | aracteristics |                                       |                  |              |          |                |                     |              | Sheet 1      |
| Site Area            |               |                                       |                  |              |          | 1.480          | ha                  |              |              |
| SAAR                 |               |                                       |                  |              |          | 1106           | mm                  |              |              |
| Soil Category        |               | 4                                     |                  | SOIL =       |          | 0.47           |                     |              |              |
| M5-60                |               |                                       |                  |              |          | 16.3           |                     |              |              |
| M5-2D                | 04 -          |                                       |                  |              |          | 76.6           | mm                  |              |              |
| r = M5-60 / M5       | -2d =         |                                       |                  |              |          | 0.21           |                     |              |              |
| Permissible fl       | ow (Q100) =   | 23.79                                 | l/s              |              |          |                |                     |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
| Developent Area =    |               | 1.480 ha                              |                  |              |          |                |                     |              |              |
| Impervious Are       |               | 1.480                                 |                  | •            |          |                |                     | -            |              |
| Rainfall             | Rainfall      | Including CCF                         |                  | -            | Permsble | Flow to        | Storage             |              |              |
| duration             | depth (R100)  |                                       | of runoff        | flow         | Flow     | be stored      | Volume              |              |              |
| hrs                  | mm            | mm                                    | m3               | m3/s         | m3/s     | m3/s           | m3                  | _            |              |
| 0.25                 | 16.1          | 17.7                                  | 262.11           | 0.291        | 0.0238   | 0.267          | 241                 | _            |              |
| 0.5                  | 21.6<br>28.9  | 23.8<br>31.8                          | 351.65<br>470.49 | 0.195        | 0.0238   | 0.172<br>0.107 | 309                 | _            |              |
| 1                    |               |                                       |                  |              |          |                | 385                 | _            |              |
| 2                    | 38.7          | 42.6                                  | 630.04           | 0.088        | 0.0238   |                | 459                 | -            |              |
| 4                    | <u>51.8</u>   | <u>57.0</u>                           | 843.30           | 0.059        | 0.0238   | 0.035          | 501                 | _            |              |
| 6                    | 61.5          | 67.7                                  | 1001.22          | 0.046        | 0.0238   | 0.023          | 487                 | -            |              |
| 12                   | 82.3          | 90.5                                  | 1339.84          | 0.031        | 0.0238   | 0.007          | 312                 | -            |              |
| 24                   | 110.3         | 121.3                                 | 1795.68          | 0.021        | 0.0238   | -0.003         | -260                | -            |              |
| 48<br>Degwiged Value | 128.3         | 141.1                                 | 2088.72          | 0.012        | 0.0238   | -0.012         | -2023<br><b>501</b> | -            |              |
| Required Volu        | me = Maxum of | f storage volum                       | e, v100 =        |              |          |                | 501                 | _m3          |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
|                      |               | Total attenuation                     | on storago ro    | auired (m2)  | _        | [              | 501                 | m3           |              |
|                      |               |                                       | un storage re    | quireu (113) | -        | l              | 501                 |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |
|                      |               |                                       |                  |              |          |                |                     |              |              |

| PROJECT REF: Bessborough SHD Development                         |                           |                            |                                                |         |
|------------------------------------------------------------------|---------------------------|----------------------------|------------------------------------------------|---------|
| LOCATION:                                                        |                           | -                          |                                                |         |
| DATE: 17-Feb-22                                                  |                           |                            |                                                |         |
| CREATED BY: DOB                                                  |                           |                            |                                                |         |
| SYSTEM PARAMETERS                                                |                           |                            | STORMTECH SYSTEM DETAIL                        |         |
| Required Total Storage                                           | <b>501</b> m <sup>3</sup> |                            | StormTech Chamber Model                        | MC3500  |
| Stormtech chamber model                                          | MC3500                    |                            | Unit Width                                     | 1.955 m |
| Filtration Permeable Geo or Impermeable Geo                      | Filter geo                |                            | Unit Length                                    | 2.18 m  |
| Number of Isolator Rows (IR)                                     | 1                         |                            | Unit Height                                    | 1.145 m |
|                                                                  | L.                        |                            | Min Cover Over System                          | 0.3 m   |
| SITE PARAMETERS                                                  |                           |                            | Max Cover Over Chamber                         | 2.4 m   |
| Stone Porosity                                                   | 43%                       |                            | Chamber Internal Storage Vol.                  | 3.11 m  |
| Excavation Batter Angle (degrees)                                | 60 °                      | Minimum Requirement        | Header Pipe Internal Storage Vol in Excavation | 0.0 m   |
| Stone Above Chambers                                             | 0.3 m                     | 0.30                       |                                                |         |
| Stone Below Chambers                                             | 0.3 m                     | 0.23                       |                                                |         |
| n-between Row Spacing                                            | 0.23 m                    | 0.23                       | STONE AND EXCAVATION DETAIL                    |         |
| Additional Storage outside Excavation. E.g manholes, Header Pipe | 0 m <sup>3</sup>          |                            | Volume of Dig for System                       | 821 m   |
|                                                                  | l.                        |                            | Width at base                                  | 18.00 m |
| HEADER PIPE                                                      |                           |                            | Width at top                                   | 20.01 m |
| s Header pipe required within excavation                         | No                        |                            | Length at base                                 | 23.70 m |
| Drientation of Header Pipe                                       | Parrallel to IR           |                            | Length at top                                  | 25.71 m |
| Diameter of Header Pipe                                          | 0.6 m                     |                            | Depth Of System                                | 1.75 m  |
| Length of Header Pipe                                            | 0 m                       |                            | Area of Dig at Base of System                  | 427 m   |
|                                                                  | ·                         |                            | Area of Dig at Top of System                   | 515 m   |
| CHAMBER SYSTEM DIMENSIONS                                        | Calculated Adop           | ted                        | Void Ratio                                     | 61%     |
| Number of Rows                                                   |                           | 8 ea                       | Stone Requirement - m3                         | 564 m   |
| Number of units per Row                                          |                           | 10 ea                      | Stone Requirement - tonne                      | 924 to  |
| System Installed Storage Depth (effective storage depth)         | 1.745                     | m                          |                                                |         |
| Tank overall installed Width at base                             | 17.85 1                   | 8.00 m                     |                                                |         |
| Tank overall installed Length at Base                            | 23.54                     | 23.7 m                     |                                                |         |
| Total Effective System Storage                                   | 496.2 5                   | <b>01.2</b> m <sup>3</sup> |                                                |         |
|                                                                  | I                         |                            |                                                |         |

**CORK CITY COUNCIL - EXISTING WATERMAIN RECORDS** 



